Publications by authors named "Tomoyuki Yokoyama"

Titin, a giant sarcomeric protein, regulates diastolic left ventricular (LV) passive stiffness as a molecular spring and could be a therapeutic target for diastolic dysfunction. Sacubitril/valsartan (Sac/Val), an angiotensin receptor neprilysin inhibitor, has been shown to benefit patients with heart failure with preserved ejection fraction. The effect of Sac/Val is thought to be due to the enhancement of the cGMP/PKG pathway via natriuretic peptide.

View Article and Find Full Text PDF

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) improve heart failure (HF) outcomes across a range of patient characteristics. A hypothesis that SGLT2i induce metabolic change similar to fasting has recently been proposed to explain their profound clinical benefits. However, it remains unclear whether SGLT2i primarily induce this change in physiological settings.

View Article and Find Full Text PDF

Ketone body β-hydroxybutyrate (βOHB) and fibroblast growth factor-21 (FGF21) have been proposed to mediate systemic metabolic response to fasting. However, it remains elusive about the signaling elicited by ketone and FGF21 in the heart. Stimulation of neonatal rat cardiomyocytes with βOHB and FGF21 induced peroxisome proliferator-activated receptor α (PPARα) and PGC1α expression along with the phosphorylation of LKB1 and AMPK.

View Article and Find Full Text PDF

Recently, new vaccine platforms-including mRNA vaccines for coronavirus disease 2019 (COVID-19) have been given emergency use authorization in Japan. Here, we present a rare case of myocarditis following a COVID-19 vaccine. In this case, myocarditis was confirmed by cardiac magnetic resonance imaging, endomyocardial biopsy, and troponin levels.

View Article and Find Full Text PDF

Lipid-rich macrophages in atherosclerotic lesions are thought to be derived from myeloid and vascular smooth muscle cells. A series of studies with genetic and pharmacological inhibition of fatty acid binding protein 4 (FABP4) and FABP5 and bone marrow transplant experiments with FABP4/5 deficient cells in mice have demonstrated that these play an important role in the development of atherosclerosis. However, it is still uncertain about the differential cell-type specificity and distribution between FABP4- and FABP5-expressing cells in early- and late-stage atherosclerotic lesions.

View Article and Find Full Text PDF

Dipeptidyl peptidase-4 (DPP-4) inhibitors are widely used incretin-based therapy for the treatment of type 2 diabetes. We investigated the cardioprotective effect of a DPP-4 inhibitor, vildagliptin (vilda), on myocardial metabolism and cardiac performance under pressure overload. Mice were treated with either vehicle or vilda, followed by transverse aortic constriction (TAC).

View Article and Find Full Text PDF

Fibroblast growth factor 21 (FGF21) is a metabolic hormone having anti-oxidative and anti-hypertrophic effects. However, the regulation of FGF21 expression during acute myocardial infarction (AMI) remains unclear. We tested blood samples from 50 patients with AMI and 43 patients with stable angina pectoris (sAP) for FGF21, fatty acid binding protein 4 (FABP4), a protein secreted from adipocytes in response to adrenergic lipolytic signal, and total and individual fatty acids.

View Article and Find Full Text PDF

Background: Skeletal muscle prefers carbohydrate use to fatty acid (FA) use as exercise intensity increases. In contrast, skeletal muscle minimizes glucose use and relies more on FA during fasting. In mice deficient for FABP4 and FABP5 (double knockout (DKO) mice), FA utilization by red skeletal muscle and the heart is markedly reduced by the impairment of trans-endothelial FA transport, with an increase in glucose use to compensate for reduced FA uptake even during fasting.

View Article and Find Full Text PDF
Article Synopsis
  • During fasting, skeletal muscle typically relies on fatty acids instead of glucose, but mice lacking CD36 show reduced fat uptake and increased glucose use, even when fasting.
  • A study found that CD36 mice exhibited significantly reduced exercise endurance after 24 hours of fasting compared to wild type mice, despite similar running distances in a fed state.
  • The inability of CD36 mice to utilize fatty acids and the increased demand for glucose led to limited energy substrates, highlighting the critical role of CD36 in maintaining nutrient balance and exercise performance during fasting.
View Article and Find Full Text PDF

Background: Lipolysis is stimulated by activation of adrenergic inputs to adipose tissues. Our recent study showed that serum concentrations of fatty acid binding protein 4 (FABP4) are robustly elevated in patients with acute myocardial infarction and ventricular tachyarrhythmia, that display a marked activation of the sympathetic nervous system (SNS). However, it remains unknown whether circulating FABP4 concentrations are associated with exercise-induced SNS activation.

View Article and Find Full Text PDF

Background: Acute myocardial infarction (AMI) induces marked activation of the sympathetic nervous system. Fatty acid binding protein 4 (FABP4) is not only an intracellular protein, but also a secreted adipokine that contributes to obesity-related metabolic complications. Here, we examined the role of serum FABP4 as a pathophysiological marker in patients with AMI.

View Article and Find Full Text PDF

Background: Fatty acids constitute the critical components of cell structure and function, and dysregulation of fatty acid composition may exert diverging vascular effects including proliferation, migration, and differentiation of vascular smooth muscle cells (VSMCs). However, direct evidence for this hypothesis has been lacking. We investigated the role of elongation of long-chain fatty acid member 6 (Elovl6), a rate-limiting enzyme catalyzing the elongation of saturated and monounsaturated long-chain fatty acid, in the regulation of phenotypic switching of VSMC.

View Article and Find Full Text PDF

Hypothermia can occur during fasting when thermoregulatory mechanisms, involving fatty acid (FA) utilization, are disturbed. CD36/FA translocase is a membrane protein which facilitates membrane transport of long-chain FA in the FA consuming heart, skeletal muscle (SkM) and adipose tissues. It also accelerates uptake of triglyceride-rich lipoprotein by brown adipose tissue (BAT) in a cold environment.

View Article and Find Full Text PDF

Hypothermia is rapidly induced during cold exposure when thermoregulatory mechanisms, including fatty acid (FA) utilization, are disturbed. FA binding protein 4 (FABP4) and FABP5, which are abundantly expressed in adipose tissues and macrophages, have been identified as key molecules in the pathogenesis of overnutrition-related diseases, such as insulin resistance and atherosclerosis. We have recently shown that FABP4/5 are prominently expressed in capillary endothelial cells in the heart and skeletal muscle and play a crucial role in FA utilization in these tissues.

View Article and Find Full Text PDF

Despite the established role of alveolar type II epithelial cells for the maintenance of pulmonary function, little is known about the deregulation of lipid composition in the pathogenesis of pulmonary fibrosis. The elongation of long-chain fatty acids family member 6 (Elovl6) is a rate-limiting enzyme catalysing the elongation of saturated and monounsaturated fatty acids. Here we show that Elovl6 expression is significantly downregulated after an intratracheal instillation of bleomycin (BLM) and in human lung with idiopathic pulmonary fibrosis.

View Article and Find Full Text PDF

Free fatty acids (FFAs), elevated in metabolic syndrome and diabetes, play a crucial role in the development of atherosclerotic cardiovascular disease, and eicosapentaenoic acid (EPA) counteracts many aspects of FFA-induced vascular pathology. Although vascular calcification is invariably associated with atherosclerosis, the mechanisms involved are not completely elucidated. In this study, we tested the hypothesis that EPA prevents the osteoblastic differentiation and mineralization of vascular smooth muscle cells (VSMC) induced by palmitic acid (PA), the most abundant long-chain saturated fatty acid in plasma.

View Article and Find Full Text PDF

Background: Endothelium is a crucial blood-tissue interface controlling energy supply according to organ needs. We investigated whether peroxisome proliferator-activated receptor-γ (PPARγ) induces expression of fatty acid-binding protein 4 (FABP4) and fatty acid translocase (FAT)/CD36 in capillary endothelial cells (ECs) to promote FA transport into the heart.

Methods And Results: Expression of FABP4 and CD36 was induced by the PPARγ agonist pioglitazone in human cardiac microvessel ECs (HCMECs), but not in human umbilical vein ECs.

View Article and Find Full Text PDF

Background: Hyperleptinemia is known to participate in cardiac hypertrophy and hypertension, but the relationship between pressure overload and leptin is poorly understood. We therefore examined the expression of leptin (ob) and the leptin receptor (ob-R) in the pressure-overloaded rat heart. We also examined gene expressions in culture cardiac myocytes to clarify which hypertension-related stimulus induces these genes.

View Article and Find Full Text PDF

Cardiac fibrosis is an important process of myocardial remodeling. Connective tissue growth factor (CTGF) is a cytokine that plays a key role in the occurrence of progressive fibrosis and excessive scarring. CTGF levels are increased in the failing heart.

View Article and Find Full Text PDF

Mismatch between the uptake and utilization of long-chain fatty acids in the myocardium leads to abnormally high intracellular fatty acid concentration, which ultimately induces myocardial dysfunction. Stearoyl-Coenzyme A desaturase-1 (SCD1) is a rate-limiting enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids. Previous studies have shown that SCD1-deficinent mice are protected from insulin resistance and diet-induced obesity; however, the role of SCD1 in the heart remains to be determined.

View Article and Find Full Text PDF

Background: It is well known that oxidative stress is induced by metabolic syndrome (MetS), leading to cardiovascular diseases. On the other hand, obstructive sleep apnea syndrome (OSAS) is frequently complicated with MetS, and OSAS is also considered to induce oxidative stress. Thus, we examined the plasma and urine markers of oxidative stress and antioxidant status in patients with OSAS with or without MetS.

View Article and Find Full Text PDF

Objective: Obstructive sleep apnea syndrome (OSAS) is frequently complicated by metabolic syndrome, including diabetes and hypertension. Both OSAS and metabolic syndrome are strongly associated with obesity. Recently, adiponectin and leptin, which are secreted by adipose tissue, have been considered to play important roles in the progression of these diseases.

View Article and Find Full Text PDF

Prostaglandin F(2alpha) (PGF(2alpha)) stimulates hypertrophic growth of neonatal rat cardiac myocytes, a feature of which includes downregulation of the Ca(2+)-ATPase (SERCA2), a major Ca(2+) transport protein in SR. The molecular mechanisms by which PGF(2alpha) inhibits SERCA2 gene expression remain unknown. We determined the cis-regulatory elements responsible for the regulation of the SERCA2 gene expression in cultured neonatal rat cardiac myocytes exposed to PGF(2alpha).

View Article and Find Full Text PDF

Background: Connective tissue growth factor (CTGF) has been recently reported as a mediator of myocardial fibrosis; however, the significance of plasma CTGF concentration has not been evaluated in patients with heart failure. The aim of this study was to investigate the clinical utility of plasma CTGF concentration for the diagnosis of heart failure.

Methods And Results: We evaluated fifty-two patients with chronic heart failure.

View Article and Find Full Text PDF

Concentrations of leptin, an adipocyte-derived hormone, are elevated in obesity. Recently, leptin has been shown to participate in multiple biological actions including inflammation, reproduction, and angiogenesis. Leptin has also been documented as a critical component in the process of wound healing; however, leptin involvement in cardiovascular disease is poorly understood.

View Article and Find Full Text PDF