Publications by authors named "Tomoyuki Kurose"

Traumatic brain injury (TBI) causes a neurological impairment of the central nervous system that may induce severe motor deficits. In this study, human cranial bone-derived mesenchymal stem cells (hcMSCs) were transplanted into a mouse TBI model, and the effects of differences in exercise frequency were examined as a rehabilitation approach to improve motor function after cell transplantation. Twenty-four hours after TBI induction, phosphate-buffered saline or hcMSCs were intravenously injected into mice that were divided into a non-exercise group, a low-frequency exercise group (LF Ex), and a high-frequency exercise group (HF Ex).

View Article and Find Full Text PDF
Article Synopsis
  • Researchers explored the effects of transplanting human cranial bone-derived mesenchymal stem cells (hcMSCs) that were cultured in simulated microgravity (sMG) on rat models of cerebral infarction.
  • The study found that hcMSCs from the sMG group improved neurological function significantly better than those from normal gravity (1G) culture, with enhanced expression of neurotrophic factors.
  • RNA sequencing indicated that genes associated with cell growth, brain repair, and reduced differentiation were more active in stem cells from the sMG environment compared to the 1G group, suggesting potential benefits for recovery after stroke.
View Article and Find Full Text PDF

Anxiety commonly co-occurs with and exacerbates pain, but the interaction between pain progression and anxiety, and its underlying mechanisms remain unclear. Inhibitory interneurons play a crucial role in maintaining normal central nervous system function and are suggested to be involved in pain-induced anxiety. This study aimed to elucidate the time-dependent effects of neuropathic pain on the developmental anxiety-like behaviors and related inhibitory interneurons; parvalbumin (PV)- and cholecystokinin (CCK)-positive neurons in corticolimbic regions.

View Article and Find Full Text PDF

Introduction: The regulation of stem cell differentiation is important in determining the quality of transplanted cells in regenerative medicine. Physical stimuli are involved in regulating stem cell differentiation, and in particular, research on the regulation of differentiation using gravity is an attractive choice. We have shown that microgravity is useful for maintaining undifferentiated mesenchymal stem cells (MSCs).

View Article and Find Full Text PDF

Cell-based therapies with mesenchymal stem cells (MSCs) are considered as promising strategies for spinal cord injury (SCI). MSCs have unique characteristics due to differences in the derived tissues. However, relatively few studies have focused on differences in the therapeutic effects of MSCs derived from different tissues.

View Article and Find Full Text PDF

We analyzed the cell characteristics, neuroprotective, and transplantation effects of human cranial bone-derived mesenchymal stem cells (hcMSCs) in ischemic stroke model rats compared with human iliac bone-derived mesenchymal stem cells (hiMSCs). The expressions of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF ) as neurotrophic factors were analyzed in both MSCs. hiMSCs or hcMSCs were intravenously administered into ischemic stroke model rats at 3 or 24 h after middle cerebral artery occlusion (MCAO) and neurological function was evaluated.

View Article and Find Full Text PDF

Spinal cord ischemia is a potential complication of thoracoabdominal aortic surgery that may induce irreversible motor disability. We investigated the therapeutic efficacy of simulated microgravity-cultured mesenchymal stem cell (MSC) injection following spinal cord ischemia-reperfusion injury. Sprague-Dawley rats were divided into sham, phosphate-buffered saline (PBS), normal gravity-cultured MSC (MSC-1 G), and simulated microgravity-cultured MSC (MSC-MG) groups.

View Article and Find Full Text PDF

Although exercise is effective in improving obesity and hyperinsulinemia, the exact influence of exercise on the capillary density of skeletal muscles remains unknown. The aim of this study was to investigate the effects of low-intensity exercise training on metabolism in obesity with hyperinsulinemia, focusing specifically on the capillary density within the skeletal muscle. Otsuka Long-Evans Tokushima fatty (OLETF) rats were used as animal models of obesity with hyperinsulinemia, whereas Long-Evans Tokushima Otsuka (LETO) rats served as controls (no obesity, no hyperinsulinemia).

View Article and Find Full Text PDF

Pressure ulcers have been investigated in a few animal models, but the molecular mechanisms of pressure ulcers are not well understood. We hypothesized that pressure results in up-regulation of inflammatory cytokines and those cytokines contribute to the formation of pressure ulcers. We measured genome-wide changes in transcript levels after compression, and focused especially on inflammatory cytokines.

View Article and Find Full Text PDF

To study the microvascular circulation, we examined the proportion of open and functioning capillaries in the leg muscles, pancreas and small intestine of anesthetized rats. Fluorescein isothiocyanate (FITC)-labeled Lycopersicon esculentum lectin was injected into the heart and allowed to circulate for 3 min to label open and functioning capillaries. Specimens were removed, frozen, sectioned and double-immunostained.

View Article and Find Full Text PDF

Background: Whole-body vibration has been suggested for the prevention of muscle mass loss and muscle wasting as an attractive measure for disuse atrophy. This study examined the effects of daily intermittent whole-body vibration and weight bearing during hindlimb suspension on capillary number and muscle atrophy in rat skeletal muscles.

Methods: Sixty male Wistar rats were randomly divided into four groups: control (CONT), hindlimb suspension (HS), HS + weight bearing (WB), and HS + whole-body vibration (VIB) (n = 15 each).

View Article and Find Full Text PDF

Local cooling and/or warming of the body are widely used for therapy. For safer and more effective therapy, microvascular hemodynamics needs to be clarified. To examine blood circulation in rat leg muscles at 20, 30, 37 and 40°C, fluorescein isothiocyanate (FITC)-labeled Lycopersicon esculentum lectin was injected into the cardiac ventricle.

View Article and Find Full Text PDF

Experimental pressure ulcers were successfully produced in the rat abdominal wall at 100 mmHg in our previous study. We hypothesized that injury is less severe when pressures are lower than 100 mmHg and explored a critical pressure in the production of pressure ulcers. At 70 and 60 mmHg, repeated compressions for 4 h daily for 5 consecutive days resulted in partial skin necrosis and eschar formation in the majority of rats, whereas skin injuries were absent or very mild in most of the rats at 50 mmHg.

View Article and Find Full Text PDF

Denervation alters the metabolism of the extracellular matrix (ECM) in skeletal muscle; however, the underlying mechanisms of ECM remodeling are not fully understood. The aim of this study was to elucidate the dynamic features of the ECM regulatory process in the early phase of denervated skeletal muscle in male Wistar rats. We investigated the expression of collagens (total, type I, and type III), transforming growth factor beta 1 (TGF-β1), and matrix metalloproteases (MMPs) together with their endogenous inhibitors (TIMPs), at the mRNA and/or protein level in the soleus muscles of control animals and at days 3, 7, and 14 post-denervation.

View Article and Find Full Text PDF

Muscle injury was studied to test the hypotheses that maintaining the soleus muscle at a long muscle length during contraction prevents muscle injuries and that the prevention of initial muscle injuries reduces subsequent muscle damage. The rat sciatic nerve was stimulated for 30 min with plantar or dorsal flexion of the foot, and the time course of contraction-induced injuries was examined. The soleus muscle injuries were first classified into one of five types, and the percentages of aberrant sarcomere areas observed in the soleus muscle were then separately quantified by electron microscopy at 0, 1, 6, 12, and 24 h (n = 3) post-stimulation.

View Article and Find Full Text PDF

To develop an experimental model and evaluate the effects of the magnitude and duration of pressure, the rat abdominal wall (25x20 mm) was subjected to compression either by a weight or by two magnets. In the weight compression tests, a steel plate was inserted under anesthesia into the rat peritoneal cavity, and the abdominal wall was compressed in situ between the underlying steel plate and a weight placed on the abdominal wall. This method resulted in moderate changes in the subcutaneous connective tissue and muscle at 100 mmHg (13.

View Article and Find Full Text PDF

The skeletal muscle capillary supply (capillarity) dynamically changes in response to muscle conditions such as growth, atrophy, and hypertrophy. The capillary number-to-fiber ratio is reported to correlate closely with the muscle fiber cross sectional area. However, little information is available regarding the capillarity of neonatal and very young skeletal muscles.

View Article and Find Full Text PDF

An experimental design was developed for morphometric analysis of the subcutaneous connective tissue after the subcutaneous injection of 0.1 ml of saline or a histamine solution (0.01, 0.

View Article and Find Full Text PDF

The distribution of collagen types I and III and elastin in the developing leg muscles were studied by immunohistochemistry in rat. From 0-day to 8-weeks old, the size of the gastrocnemius and plantaris muscles increased. The muscle connective tissue developed in the order of epimysium, perimysium and finally endomysium.

View Article and Find Full Text PDF

The formaldehyde concentration in the air and in various tissues of 35 human cadavers were measured during a gross anatomy course held at the Faculty of Medicine of Hiroshima University in the 2003 educational year. Atmospheric formaldehyde levels were 0.25-0.

View Article and Find Full Text PDF

Mammalian skin can extensively slide over most parts of the body. To study the mechanism of this mobility of the skin, the structure of the subcutaneous connective tissue was examined by light microscopy. The subcutaneous connective tissue was observed to be composed of multiple layers of thin collagen sheets containing elastic fibers.

View Article and Find Full Text PDF