Publications by authors named "Tomoyuki Kurioka"

Necking and barreling deformation behaviors occurred simultaneously during the bending test of a single-crystal gold micro-cantilever (sample A) with the loading direction parallel to the [1-10] orientation and the neutral plane parallel to the [110] orientation. In contrast, for another single-crystal gold micro-cantilever, sample B, with the loading direction aligned parallel to the [0.37 -0.

View Article and Find Full Text PDF

Compared to other known materials, metal-organic frameworks (MOFs) have the highest surface area and the lowest densities; as a result, MOFs are advantageous in numerous technological applications, especially in the area of photocatalysis. Photocatalysis shows tantalizing potential to fulfill global energy demands, reduce greenhouse effects, and resolve environmental contamination problems. To exploit highly active photocatalysts, it is important to determine the fate of photoexcited charge carriers and identify the most decisive charge transfer pathway.

View Article and Find Full Text PDF

Imine-based covalent organic frameworks (COFs) are crystalline porous materials with prospective uses in various devices. However, general bulk synthetic methods usually produce COFs as powders that are insoluble in most of the common organic solvents, arising challenges for the subsequent molding and fixing of these materials on substrates. Here, we report a novel synthetic methodology that utilizes an electrogenerated acid (EGA), which is produced at an electrode surface by electrochemical oxidation of a suitable precursor, acting as an effective Brønsted acid catalyst for imine bond formation from the corresponding amine and aldehyde monomers.

View Article and Find Full Text PDF

Polyethylene terephthalate (PET) is known to be highly inert, and this makes it difficult to be metallized. In addition, Pt electroless plating is rarely reported in the metallization of polymers. In this study, the metallization of biocompatible Pt metal is realized by supercritical CO (sc-CO)-assisted electroless plating.

View Article and Find Full Text PDF

Electrochemical doping of conducting polymers (CPs) generates polarons (radical ionic species) and bipolarons (ionic species) in their backbone via multi-electron transfer between an electrode and the CP. In the electrochemical polymer reaction (ePR), these generated ionic species are regarded as reactive intermediates for further transformation of the chemical structures of CPs. This electrochemical post-functionalization can easily be used to control the degree of reactions by turning a power supply on/off, as well as tuning the applied electrode potential, which leads to fine-tuning of the various properties of the CPs, such as the HOMO/LUMO level and PL properties.

View Article and Find Full Text PDF

We herein report that the regioselective anodic fluorination of -alkyl benzothioate and its derivatives in various aprotic solvents using EtN·HF ( = 3-5) and EtNF·HF ( = 3-5) as supporting electrolyte and a fluorine source successfully provided the corresponding α-fluorinated products in moderate yields. Dichloromethane containing EtNF·4HF was found to be the most suitable combination as electrolytic solvent and supporting salt as well as fluorine source for the anodic fluorination. The electrochemical fluorination of cyclic benzothioates such as benzothiophenone was also achieved.

View Article and Find Full Text PDF