Publications by authors named "Tomoyuki Hioki"

Gallein is a known Gβγ subunit inhibitor, but its function in bone metabolism, especially in osteoblasts, and its molecular mechanism remains to be elucidated. Osteoprotegerin (OPG), which is secreted from osteoblasts, binds to nuclear factor kB receptor activator (RANK) ligand (RANKL) as a decoy receptor, prevents RANKL-RANK binding, and inhibits bone resorption. IL-6 is not only a bone resorption factor but also as a bone metabolism regulator.

View Article and Find Full Text PDF
Article Synopsis
  • Gallein is a small molecule that inhibits Gβγ subunits, showing promise as a potential treatment for inflammation-related organ dysfunctions, though its effects on bone metabolism are not yet clear.
  • Prostaglandins, like PGD, are crucial for bone health, and they induce the production of important factors like osteoprotegerin (OPG) and interleukin-6 (IL-6) in osteoblasts, influenced by specific signaling pathways.
  • In this study, gallein was found to enhance the release of OPG and IL-6 when cells were stimulated with PGD, acting specifically on Gβγ subunits without affecting the activation of key signaling proteins like p38 MAPK or JNK.
View Article and Find Full Text PDF

Evidence is accumulating that osteal macrophages, in addition to bone-resorbing osteoclasts and bone-forming osteoblasts, participate vitally in bone remodeling process. Oncostatin M (OSM), an inflammatory cytokine belonging to interleukin-6 superfamily, is recognized as an essential factor secreted by osteal macrophages to orchestrate bone remodeling. Osteoprotegerin (OPG) produced by osteoblasts regulates osteoclastogenesis.

View Article and Find Full Text PDF

Gallein is known as an inhibitor of Gβγ subunits, but roles of gallein in bone metabolism have not been reported. Fibroblast growth factor 2 (FGF-2) increases angiogenesis and promotes bone regeneration during the early stages of fracture healing. Osteoprotegerin (OPG) secreted by osteoblasts, binds to the receptor activator of nuclear factor-κB (RANK) ligand (RANKL) as a decoy receptor and prevents RANKL from binding to RANK, resulting in the suppression of bone resorption.

View Article and Find Full Text PDF

Background: Akt plays diverse roles in humans. It is involved in the pathogenesis of type 2 diabetes mellitus (T2DM), which is caused by insulin resistance. Akt also plays a vital role in human platelet activation.

View Article and Find Full Text PDF

Bone remodeling is tightly controlled by various factors, including hormones, autacoids and cytokines. Among them, oncostatin M (OSM) is a multifunctional cytokine produced by osteal macrophages, which serves as an essential modulator of bone remodeling. Macrophage colony-stimulating factor (M-CSF) and osteoprotegerin are secreted by osteoblasts, and also have pivotal roles in the regulation of the bone remodeling process.

View Article and Find Full Text PDF

Heat shock protein 70 (HSP70) functions as an ATP‑dependent molecular chaperone under stress and is involved in protein homeostasis, folding and degradation. HSP70 inhibitors amplify TGF‑β‑stimulated VEGF synthesis in the mouse osteoblastic MC3T3‑E1 cell line. Basic fibroblast growth factor (bFGF) stimulates IL‑6 release via p38 MAPK in MC3T3‑E1 osteoblast‑like cells.

View Article and Find Full Text PDF

Resveratrol is a natural polyphenol found in grapes and beneficial for human health. Resveratrol regulates basic fibroblast growth factor (bFGF)-induced osteoprotegerin synthesis through Akt pathway in osteoblast-like MC3T3-E1 cells. In this study, we investigated resveratrol effects on bFGF-induced macrophage colony-stimulating factor (M-CSF) synthesis in MC3T3-E1 cells.

View Article and Find Full Text PDF

Oncostatin M produced by osteal macrophages plays a significant role in fracture healing. Osteoprotegerin (OPG) secreted by osteoblasts, binds to the receptor activator of nuclear factor-κB (RANK) ligand (RANKL) as a decoy receptor and prevents RANKL from binding to RANK, resulting in bone resorption suppression. Interleukin-6 (IL-6) is a pro-inflammatory cytokine and generally regulates bone resorption.

View Article and Find Full Text PDF

Tramadol is a useful analgesic which acts as a serotonin and noradrenaline reuptake inhibitor in addition to μ-opioid receptor agonist. Cytoplasmic serotonin modulates the small GTPase activity through serotonylation, which is closely related to the human platelet activation. We recently reported that the combination of subthreshold collagen and CXCL12 synergistically activates human platelets.

View Article and Find Full Text PDF

Selective estrogen receptor modulator (SERM) binds to estrogen receptors (ERs) and acts as both an agonist or an antagonist, depending on the target tissue. Raloxifene and bazedoxifene as SERMs are currently used hormone replacement medicines for postmenopausal osteoporosis. Macrophage colony-stimulating factor (M-CSF) secreted from osteoblasts promotes osteoclastogenesis.

View Article and Find Full Text PDF

Background: Oncostatin M produced by osteal macrophages, a cytokine that belongs to the interleukin-6 family, is implicated in bone fracture healing. Macrophage colony-stimulating factor (M-CSF) secreted from osteoblasts plays an important role in osteoclastogenesis. We have previously reported that tumor necrosis factor-α (TNF-α), a potent bone resorptive agent, stimulates the activation of p44/p42 mitogen-activated protein (MAP) kinase, Akt, and p70 S6 kinase in osteoblast-like MC3T3-E1 cells, and induces the synthesis of M-CSF at least in part via Akt.

View Article and Find Full Text PDF

Aim: In acute medicine, we occasionally treat life-threatening conditions such as sepsis and trauma, which cause severe thrombocytopenia. Serum thrombopoietin levels have been reported to increase under the condition of thrombocytopenia related to severity. Collagen is a crucial activator of platelets, and Rho family members, such as Rho/Rho-kinase and Rac, play roles as active molecules involved in the intracellular signaling pathways in platelet activation.

View Article and Find Full Text PDF

Background: Heat shock protein (HSP) 90 functions as a molecular chaperone and is constitutively expressed and induced in response to stress in many cell types. We have previously demonstrated that transforming growth factor-β (TGF-β), the most abundant cytokine in bone cells, induces the expression of HSP27 through Smad2, p44/p42 mitogen-activated protein kinase (MAPK), p38 MAPK, and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in mouse osteoblastic MC3T3-E1 cells. This study investigated the effects of HSP90 on the TGF-β-induced HSP27 expression and the underlying mechanism in mouse osteoblastic MC3T3-E1 cells.

View Article and Find Full Text PDF

Bone fracture is an important trauma frequently encountered into emergency medicine as well as orthopedics reflecting an aging society. Oncostatin M, an inflammatory cytokine produced by osteal macrophages, has been considered to play a crucial role in fracture healing. Macrophage colony-stimulating factor (M-CSF) secreted from osteoblasts is essential in osteoclastgenesis, and the secretion is stimulated by transforming growth factor-β (TGF-β).

View Article and Find Full Text PDF

Psoriatic arthritis (PsA) is a chronic inflammatory disorder that affects approximately 20-30% of patients with psoriasis. PsA causes deformities and joint damage, impairing quality of life and causing long-term functional disability. Several recent studies demonstrated that early diagnosis and intervention for PsA prevents permanent invalidity.

View Article and Find Full Text PDF

Incretins including glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), which are secreted from the small intestine after oral food ingestion, are currently well-known to stimulate insulin secretion from pancreatic β-cells and used for the treatment of type 2 diabetes mellitus. We have previously reported that prostaglandin F (PGF) stimulates the synthesis of interleukin-6 (IL-6) and osteoprotegerin in osteoblast-like MC3T3-E1 cells, and that IL-6 and osteoprotegerin release are mediated through the p44/p42 mitogen-activated protein (MAP) kinase, p38 MAP kinase or stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) pathways. In the present study, we investigated the effects of incretins including GLP-1 and GIP, on the PGF-induced synthesis of IL-6 and osteoprotegerin and examined the detailed mechanism in osteoblast-like MC3T3-E1 cells.

View Article and Find Full Text PDF

Tramadol, a weak μ-opioid receptor (MOR) agonist with inhibitory effects on the reuptake of serotonin (5-hydroxytryptamine; 5-HT) and norepinephrine, is an effective analgesic to chronic pains. Osteoprotegerin produced by osteoblasts is essential for bone remodeling to suppress osteoclastic bone resorption. We previously reported that prostaglandin D (PGD) induces osteoprotegerin synthesis whereby p44/p42 mitogen-activated protein (MAP) kinase, p38 MAP kinase and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) are involved in osteoblast-like MC3T3-E1 cells.

View Article and Find Full Text PDF

Background: Olive oil polyphenols, which possess cytoprotective activities like anti-oxidant and anti-inflammatory effects, could modulate osteoblast functions. The aim of this study is to elucidate the effects and the underlying mechanisms of hydroxytyrosol and oleuropein on the tumor necrosis factor-α (TNF-α)-induced macrophage colony-stimulating factor (M-CSF) and interleukin-6 (IL-6) synthesis in osteoblasts.

Methods: Osteoblast-like MC3T3-E1 cells were pretreated with hydroxytyrosol, oleuropein, deguelin, PD98059 or wedelolactone, and then stimulated by TNF-α.

View Article and Find Full Text PDF

Background: We have demonstrated that epidermal growth factor (EGF)-induced migration of osteoblast-like MC3T3-E1 cells is mediated through p44/p42 mitogen-activated protein (MAP) kinase, p38 MAP kinase, stress-activated protein kinase/ c- N-terminal kinase (SAPK/JNK), and Akt.The molecular chaperone heat shock protein 90 (HSP90) is abundantly expressed in osteoblasts. However, the role of HSP90 in osteoblast migration remains obscure.

View Article and Find Full Text PDF

Acetaminophen is one of the most widely used analgesic and antipyretic medicines, whose long-period use has reportedly been associated with an increased risk of bone fracture. However, the mechanism underlying this undesired effect remains to be investigated. The homeostatic control of bone tissue depends on the interaction between osteoblasts and osteoclasts.

View Article and Find Full Text PDF

Duloxetine, a selective serotonin-norepinephrine reuptake inhibitor, is currently recommended for the treatment of chronic painful disorders such as fibromyalgia, chronic musculoskeletal pain, and diabetic peripheral neuropathy. We previously demonstrated that bone morphogenetic protein-4 (BMP-4) stimulates osteoprotegerin (OPG) production in osteoblast-like MC3T3-E1 cells, and that p70 S6 kinase positively regulates OPG synthesis. The present study aimed to investigate the effect of duloxetine on BMP-4-stimulated OPG synthesis in these cells.

View Article and Find Full Text PDF

Heat shock proteins (HSPs) are induced in response to extracellular stress and manage the quality of proteins as molecular chaperones. HSP70, a highly conserved HSP, has been reported to correlate with the proliferation and migration of human cancer cells, such as oral, prostate, lung and liver cancer. Regarding hepatocellular carcinoma (HCC), the HSP70 levels in the tumor tissues from patients are significantly higher than those in the normal liver tissues.

View Article and Find Full Text PDF

Duloxetine, a serotonin-norepinephrine reuptake inhibitor, is currently recommended as a useful medicine to chronic pain including low back pain. However, as the analogy of classical selective serotonin reuptake inhibitors, there is a concern to deteriorate osteoporosis with remaining to clarify the exact mechanism of duloxetine in bone metabolism. We have previously reported that prostaglandin E (PGE) induces the synthesis of both osteoprotegerin (OPG) and interleukin-6 (IL-6), essential regulators of bone metabolism, in osteoblast-like MC3T3-E1 cells.

View Article and Find Full Text PDF