Publications by authors named "Tomoyo Sasaki"

The extended Rayleigh resolution measure was introduced to give a generalized resolution measure that can be readily applied to imaging and resolving particles that have finite size. Here, we make a detailed analysis of the influence of the particle size on this resolution measure. We apply this to scanning electron microscopy, under simple assumption of a Gaussian electron beam intensity distribution and a directly proportional emitted signal yield without detailed consideration of scattering internal to the sample, other than being proportional to the sample thickness.

View Article and Find Full Text PDF

Background: Wnt/β-catenin signaling has been suggested to regulate proximal-distal determination of embryonic lung epithelium based upon genetically modified mouse models. The previously identified and characterized small molecule inhibitor IQ1 can pharmacologically decrease the interaction between β-catenin and its transcriptional coactivator p300, thereby enhancing the β-catenin/CBP interaction. Inhibition of the β-catenin/p300 interaction by IQ1 blocks the differentiation of embryonic stem cells and epicardial progenitor cells; however, whether differential coactivator usage by β-catenin plays a role in proximal-distal determination of lung epithelium is unknown.

View Article and Find Full Text PDF

The adult mammalian heart has limited capability for self-repair after myocardial infarction. Therefore, therapeutic strategies that improve post-infarct cardiac function are critically needed. The small molecule ICG-001 modulates Wnt signaling and increased the expression of genes beneficial for cardiac regeneration in epicardial cells.

View Article and Find Full Text PDF

We investigated the role of Lef1, one of the four transcription factors that transmit Wnt signaling to the genome, in the regulation of bone mass. Microcomputed tomographic analysis of 13- and 17-week-old mice revealed significantly reduced trabecular bone mass in Lef1(+/-) females compared to littermate wild-type females. This was attributable to decreased osteoblast activity and bone formation as indicated by histomorphometric analysis of bone remodeling.

View Article and Find Full Text PDF

Background: Wnt signaling is mediated through 1) the beta-catenin dependent canonical pathway and, 2) the beta-catenin independent pathways. Multiple receptors, including Fzds, Lrps, Ror2 and Ryk, are involved in Wnt signaling. Ror2 is a single-span transmembrane receptor-tyrosine kinase (RTK).

View Article and Find Full Text PDF

The purpose of this study was to examine the localization of macrophages, B-lymphocytes and osteoclasts in tumoral lesions of mammary carcinoma metastasized to bone of non-immunocompromised mice. Mouse mammary carcinoma cells (BALB/c-MC) were injected through the left cardiac ventricle into 5-week-old female wild-type Balb/c mice. The femora and tibiae of mice with metastasized cancer were extracted, and thereafter processed for histochemical analyses.

View Article and Find Full Text PDF

TGF-beta subtypes are expressed in tissues derived from cranial neural crest cells during early mouse craniofacial development. TGF-beta signaling is critical for mediating epithelial-mesenchymal interactions, including those vital for tooth morphogenesis. However, it remains unclear how TGF-beta signaling contributes to the terminal differentiation of odontoblast and dentin formation during tooth morphogenesis.

View Article and Find Full Text PDF

During craniofacial development, Meckel's cartilage and the mandible bone derive from the first branchial arch, and their development depends upon the contribution of cranial neural crest (CNC) cells. We previously demonstrated that conditional inactivation of Tgfbr2 in the neural crest of mice (Tgfbr2(fl/fl);Wnt1-Cre) results in severe defects in mandibular development, although the specific cellular and molecular mechanisms by which TGF-beta signaling regulates the fate of CNC cells during mandibular development remain unknown. We show here that loss of Tgfbr2 does not affect the migration of CNC cells during mandibular development.

View Article and Find Full Text PDF

The murine frontal bone derives entirely from the cranial neural crest (CNC) and consists of the calvarial (lateral) aspect that covers the frontal lobe of brain and the orbital aspect that forms the roof of bony orbit. TGFbeta and FGF signaling have important regulatory roles in postnatal calvarial development. Our previous study has demonstrated that conditional inactivation of Tgfbr2 in the neural crest results in severe defects in calvarial development, although the cellular and molecular mechanisms by which TGFbeta signaling regulates the fate of CNC cells during frontal bone development remain unknown.

View Article and Find Full Text PDF

Previous studies have demonstrated that TGFbeta induces a smooth muscle fate in primary neural crest cells in culture. By crossing a conditional allele of the type II TGFbeta receptor with the neural crest-specific Wnt1cre transgene, we have addressed the in vivo requirement for TGFbeta signaling in smooth muscle specification and differentiation. We find that elimination of the TGFbeta receptor does not alter neural crest cell specification to a smooth muscle fate in the cranial or cardiac domains, and that a smooth muscle fate is not realized by trunk neural crest cells in either control or mutant embryos.

View Article and Find Full Text PDF

Endothelial cells play an important role in endochondral bone formation. In the chondro-osseous junction, endothelial cells appear to invade into cartilage by the cellular mechanism of angiogenesis evidenced by cell duplication, disappearance of basement membranes and activated migration. The endothelial cells penetrate the unmineralized transverse partition of the cartilage columns.

View Article and Find Full Text PDF

LEF1 is a cell-type-specific transcription factor and mediates Wnt signaling pathway by association with its co-activator beta-catenin. Wnt signaling is known to be critical for the specification of cranial neural crest (CNC) cells and may regulate the fate diversity of the CNC during craniofacial morphogenesis. Loss of Lef1 results in arrested tooth development at the late bud stage and LEF1 is required for a relay of a Wnt signaling to a cascade of FGF signaling activities to mediate the epithelial-mesenchymal interaction during tooth morphogenesis.

View Article and Find Full Text PDF

Vitamin D deficiency results in defects in endochondral bone development characteristic of rickets, which include elongation of the cartilaginous growth plates and disorganization of the primary spongiosa. These defects are caused in part by impaired cartilage mineralization and vascularization of the chondro-osseous junction. Blood vessel invasion of mineralized cartilage is an essential step in endochondral ossification, providing access for cells that degrade cartilage as well as those that form bone.

View Article and Find Full Text PDF

We previously reported that mouse mammary carcinoma cell lines (MMT060562 and BALB/c-MC) induced osteoclast formation through production of prostaglandin E2 (PGE2) in cocultures with mouse bone marrow cells, but the mechanism(s) of PG production remained unclear. In the present in vitro and in vivo studies, we tested the involvement of cyclo-oxygenase-2 (COX-2), an inducible rate-limiting enzyme in PG biosynthesis, in the stimulation of osteoclast formation by mouse mammary carcinoma cell lines. Addition of a selective COX-2 inhibitor, JTE-522, to cocultures of mammary carcinoma cell lines and bone marrow cells lowered PGE2 concentration in the culture media and inhibited osteoclast formation in a dose-dependent manner.

View Article and Find Full Text PDF