Odours used by insects for foraging and mating are carried by the air. Insects induce airflows around them by flapping their wings, and the distribution of these airflows may strongly influence odour source localisation. The flightless silkworm moth, Bombyx mori, has been a prominent insect model for olfactory research.
View Article and Find Full Text PDFSmall drones with chemical or biosensor devices that can detect airborne odorant molecules have attracted considerable attention owing to their applicability in environmental and security monitoring and search-and-rescue operations. Small drones with commercial metal-oxide-semiconductor (MOX) gas sensors have been developed for odor source localization; however, their real-time-odor-detection performance has proven inadequate. However, biosensing technologies based on insect olfactory systems exhibit relatively high sensitivity, selectivity, and real-time response with respect to odorant molecules compared to commercial MOX gas sensors.
View Article and Find Full Text PDFHeat shock protein 70 (Hsp70) chaperone systems consist of Hsp70, Hsp40 and a nucleotide-exchange factor and function to help unfolded proteins achieve their native conformations. Typical Hsp40s assume a homodimeric structure and have both chaperone and cochaperone activity. The dimeric structure is critical for chaperone function, whereas the relationship between the dimeric structure and cochaperone function is hardly known.
View Article and Find Full Text PDFThe purpose of this study is to evaluate the dosimetric impact of the margin on the multileaf collimator-based dynamic tumor tracking plan. Furthermore, an equivalent setup margin (EM) of the tracking plan was determined according to the gated plan. A 4-dimensional extended cardiac-torso was used to create 9 digital phantom datasets of different tumor diameters (TDs) of 1, 3, and 5 cm and motion ranges (MRs) of 1, 2, and 3 cm.
View Article and Find Full Text PDFThe synthesis, structure, photoelectrochemical behavior, and nonlinear optical (NLO) properties of a symmetric acceptor-acceptor-donor-acceptor-acceptor array, C(60)-Co-TTF-Co-C(60), have been described. The precursors, namely, cobalt dicarbonyl complexes Co(C(60)Ar(5))(CO)(2) were synthesized from the penta(organo)[60]fullerenes, C(60)Ar(5)H, as starting materials. In the next step, two cobalt-fullerene complexes were connected to a tetrathiafulvalene (TTF) tetrathiolate bridge to obtain the C(60)-Co-TTF-Co-C(60) array.
View Article and Find Full Text PDF