Sirtuins (SIRT1-7 in mammals) are a family of NAD+-dependent lysine deacetylases and deacylases that regulate diverse biological processes, including metabolism, stress responses, and aging. SIRT7 is the least well-studied member of the sirtuins, but accumulating evidence has shown that SIRT7 plays critical roles in the regulation of glucose and lipid metabolism by modulating many target proteins in white adipose tissue, brown adipose tissue, and liver tissue. This review focuses on the emerging roles of SIRT7 in glucose and lipid metabolism in comparison with SIRT1 and SIRT6.
View Article and Find Full Text PDFBrown adipose tissue plays a central role in the regulation of the energy balance by expending energy to produce heat. NAD-dependent deacylase sirtuins have widely been recognized as positive regulators of brown adipose tissue thermogenesis. However, here we reveal that SIRT7, one of seven mammalian sirtuins, suppresses energy expenditure and thermogenesis by regulating brown adipose tissue functions.
View Article and Find Full Text PDFSirtuins (SIRT1-7 in mammals) are evolutionarily conserved nicotinamide adenine dinucleotide-dependent lysine deacetylases/deacylases that regulate fundamental biological processes including aging. In this study, we reveal that male knockout (KO) mice exhibited an extension of mean and maximum lifespan and a delay in the age-associated mortality rate. In addition, aged male KO mice displayed better glucose tolerance with improved insulin sensitivity compared with wild-type (WT) mice.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
November 2020
Hepatocyte nuclear factor 1α (HNF1α) is a transcription factor required for normal insulin secretion and maintenance of β-cell number in the pancreas. HNF1α is also expressed in pancreatic α-cells, but its role in these cells is unknown. The aim of this study was to clarify the role of HNF1α in α-cells.
View Article and Find Full Text PDF