Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase pivotal in cellular signal transduction, regulating cell adhesion, migration, growth, and survival. However, the regulatory mechanisms of FAK during tumorigenesis and progression still need to be fully understood. Our previous study demonstrated that -GlcNAcylation regulates integrin-mediated cell adhesion.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
December 2024
Differentiation therapy is an alternative strategy used in treating chronic myelogenous leukemia to induce the differentiation of immature or cancerous cells toward mature cells and inhibit tumor cell proliferation. We aimed to explore N-glycans' roles in erythroid differentiation using the sodium butyrate (NaBu)-induced model of K562 cells (WT/NaBu cells). Here, using lectin blot, flow cytometry, real-time PCR, and mass spectrometry analyses, we demonstrated that the mRNA levels of N-acetylglucosaminyltransferase Ⅲ ((encoded by the MGAT3 gene) and its product (bisected N-glycans) were significantly increased during erythroid differentiation.
View Article and Find Full Text PDFα1,6-Fucosyltransferase (Fut8) is the enzyme responsible for catalyzing core fucosylation. Exogenous L-fucose upregulates fucosylation levels through the GDP-fucose salvage pathway. This study investigated the relationship between core fucosylation and immunoglobulin G (IgG) amounts in serum utilizing WT (Fut8), Fut8 heterozygous knockout (Fut8), and Fut8 knockout (Fut8) mice.
View Article and Find Full Text PDFAltered glycosylation is a common feature of cancer cells. Some subsets of glycans are found to be frequently enriched on the tumor cell surface and implicated in different tumor phenotypes. Among these, changes in sialylation have long been associated with metastatic cell behaviors such as invasion and enhanced cell survival.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
September 2024
Background: N-Acetylglucosaminyltransferase-III (GnT-III, also designated MGAT3) catalyzes the formation of a specific N-glycan branch, bisecting GlcNAc, in the Golgi apparatus. Bisecting GlcNAc is a key residue that suppresses N-glycan maturation and is associated with the pathogenesis of cancer and Alzheimer's disease. However, it remains unclear how GnT-III recognizes its substrates and how GnT-III activity is regulated in cells.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
June 2024
Background: Sialylation of glycoproteins, including integrins, is crucial in various cancers and diseases such as immune disorders. These modifications significantly impact cellular functions and are associated with cancer progression. Sialylation, catalyzed by specific sialyltransferases (STs), has traditionally been considered to be regulated at the mRNA level.
View Article and Find Full Text PDFFor acute promyelocytic leukemia (APL), differentiation therapy with all-trans retinoic acid (ATRA) is well established. However, the narrow application and tolerance development of ATRA remain to be improved. In this study, we investigated the effects of combinations of glycosylation inhibitors with ATRA to achieve better efficiency than ATRA alone.
View Article and Find Full Text PDFα1,6-Fucosyltransferase (Fut8) catalyzes the transfer of fucose to the innermost GlcNAc residue of N-glycan to form core fucosylation. Our previous studies showed that lipopolysaccharide (LPS) treatment highly induced neuroinflammation in Fut8 homozygous KO (Fut8) or heterozygous KO (Fut8) mice, compared with the WT (Fut8) mice. To understand the underlying mechanism, we utilized a sensitive inflammation-monitoring mouse system that contains the human interleukin-6 (hIL6) bacterial artificial chromosome transgene modified with luciferase (Luc) reporter cassette.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
November 2023
Background: Cytokine receptor-like factor 2 (CRLF2) is a subunit of the receptor for thymic stromal lymphopoietin (TSLP). A somatic mutation (insEIM) in the transmembrane domains of CRLF2 has been identified in acute lymphocytic leukemia (ALL), and Glu-Ile-Met (EIM) CRLF2 induces constitutive activation of signals. However, the signaling mechanism remains unclear.
View Article and Find Full Text PDFSialylation is a terminal glycosylated modification of glycoproteins that regulates critical biological events such as cell adhesion and immune response. Our previous study showed that integrin α3β1 plays a crucial role in regulating the sialylation of N-glycans. However, the underlying mechanism for the regulation remains unclear.
View Article and Find Full Text PDFThe phenomenon of multidrug resistance (MDR) is called chemoresistance with respect to the treatment of cancer, and it continues to be a major challenge. The role of N-glycosylation in chemoresistance, however, remains poorly understood. Here, we established a traditional model for adriamycin resistance in K562 cells, which are also known as K562/adriamycin-resistant (ADR) cells.
View Article and Find Full Text PDFN-Linked glycosylation and O-linked N-acetylglucosamine (O-GlcNAc) are important protein post-translational modifications that are orchestrated by a diverse set of gene products. Thus far, the relationship between these two types of glycosylation has remained elusive, and it is unclear whether one influences the other via UDP-GlcNAc, which is a common donor substrate. Theoretically, a decrease in O-GlcNAcylation may increase the products of GlcNAc-branched N-glycans.
View Article and Find Full Text PDFBackground: Pancreatic carcinoma is one of the deadliest malignant diseases, in which the increased expression of α1,6-fucosyltransferase (FUT8), a sole enzyme responsible for catalyzing core fucosylation, has been reported. However, its pathological roles and regulatory mechanisms remain largely unknown. Here, we use two pancreatic adenocarcinoma cell lines, MIA PaCa-2 and PANC-1 cells, as cell models, to explore the relationship of FUT8 with the malignant transformation of PDAC.
View Article and Find Full Text PDFFms-like tyrosine kinase 3 (FLT3) is a glycoprotein, that is a member of the class III receptor tyrosine kinase family. Approximately one-third of acute myeloid leukemia (AML) patients have mutations of this gene, and activation of the FLT3 downstream pathway plays an important role in both normal and malignant hematopoiesis. However, the role of N-glycosylation for FLT3 activation remains unclear.
View Article and Find Full Text PDFThe N-glycosylation of integrin α5β1 is involved in multiple cell biological functions. Our group previously reported that the N-glycosylation of the Calf-1,2 domain on α5 subunit (S3-5,10-14) was important for its inhibitory effect on EGFR signaling through regulating α5-EGFR complex formation. In this follow-up study, we provide evidence that the N-glycosylation on integrin β1 subunit suppress cell growth by promoting its association with EGFR under fibronectin (FN)-coated conditions.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2020
The epithelial cell adhesion molecule (EpCAM) is one of the most frequently and intensely expressed of tumor-associated antigens, but the role that EpCAM plays in the proliferation, adhesion and migration properties of cancer cells remains unclear. In the present study, we screened several tumor cell lines and found that colorectal cancer CW-2 and epidermoid carcinoma A431 cells expressed relatively higher levels of EpCAM. In order to assess the biological functions of EpCAM expression in cell adhesion and migration, we established a knock out (KO) of EpCAM genes in both of these types of cancer cells via a CRISPR/Cas9 system.
View Article and Find Full Text PDFAberrant glycan sialylation of glycoproteins is closely associated with malignant phenotypes of cancer cells and metastatic potential, which includes cell adhesion, migration, and growth. Recently, phosphatidylinositol 4-kinase IIα (PI4KIIα), which is localized to the trans-Golgi network, was identified as a regulator of Golgi phosphoprotein 3 (GOLPH3) and of vesicle transport in the Golgi apparatus. GOLPH3 is a target of PI4KIIα and helps anchor sialyltransferases and thereby regulates sialylation of cell surface receptors.
View Article and Find Full Text PDF-GlcNAcylation is a post-translational modification of a protein serine or threonine residue catalyzed by -GlcNAc transferase (OGT) in the nucleus and cytoplasm. -GlcNAcylation plays important roles in the cellular signaling that affect the different biological functions of cells, depending upon cell type. However, whether or not -GlcNAcylation regulates cell adhesion and migration remains unclear.
View Article and Find Full Text PDFBackground: α1,6-Fucosyltransferase-deficient (Fut8) mice displayed increased locomotion and schizophrenia-like behaviors. Since neuroinflammation is a common pathological change in most brain diseases, this study was focused on investigating the effects of Fut8 in microglia and astrocytes.
Methods: Brain tissues were analyzed using immunohistochemical staining.
N-Glycans are involved in numerous biologic processes, such as cell adhesion, migration, and invasion. To distinguish the functions of complex high-mannose types of N-glycans, we used the clustered, regularly interspaced, short palindromic repeats/Cas9 system to establish N-acetylglucosaminyltransferase (GnT)-I-knockout (KO) cells. Loss of GnT-I greatly induced cell-cell adhesion and decreased cell migration.
View Article and Find Full Text PDFCore fucosylation is one of the most important glycosylation events in the progression of liver cancer. For this study, we used an easily handled L-fucose analog, 2-fluoro-L-fucose (2FF), which interferes with the normal synthesis of GDP-fucose, and verified its potential roles in regulating core fucosylation and cell behavior in the HepG2 liver cancer cell line. Results obtained from lectin blot and flow cytometry analysis clearly showed that 2FF treatment dramatically inhibited core fucosylation, which was also confirmed via mass spectrometry analysis.
View Article and Find Full Text PDF