Green feather algae (Bryopsidales) undergo a unique life cycle in which a single cell repeatedly executes nuclear division without cytokinesis, resulting in the development of a thallus (>100 mm) with characteristic morphology called coenocyte. Bryopsis is a representative coenocytic alga that has exceptionally high regeneration ability: extruded cytoplasm aggregates rapidly in seawater, leading to the formation of protoplasts. However, the genetic basis of the unique cell biology of Bryopsis remains poorly understood.
View Article and Find Full Text PDFRegeneration is a widely observed phenomenon by which the integrity of an organism is recovered after damage. To date, studies on the molecular and cellular mechanisms of regeneration have been limited to a handful of model multicellular organisms. Here, the regeneration ability of marine macroalgae (Rhodophyta, Phaeophyceae, Chlorophyta) was systematically surveyed after thallus severing.
View Article and Find Full Text PDFKinesin-13 and Kinesin-8 are well-known microtubule (MT) depolymerases that regulate MT length and chromosome movement in animal mitosis. While much is unknown about plant Kinesin-8, Arabidopsis () and rice () Kinesin-13 have been shown to depolymerize MTs in vitro. However, the mitotic function of both kinesins has yet to be determined in plants.
View Article and Find Full Text PDFKinesin-8 is required for proper chromosome alignment in a variety of animal and yeast cell types. However, it is unclear how this motor protein family controls chromosome alignment, as multiple biochemical activities, including inconsistent ones between studies, have been identified. Here, we find that kinesin-8 (Klp67A) possesses both microtubule (MT) plus end-stabilizing and -destabilizing activity, in addition to kinesin-8's commonly observed MT plus end-directed motility and tubulin-binding activity in vitro.
View Article and Find Full Text PDFAugmin is a protein complex that binds to spindle microtubules (MTs), recruits the potent MT nucleator, γ-tubulin, and thereby promotes the centrosome-independent MT generation within mitotic and meiotic spindles. Augmin is essential for acentrosomal spindle assembly, which is commonly observed during mitosis in plants and meiosis in female animals. In many animal somatic cells that possess centrosomes, the centrosome- and augmin-dependent mechanisms work cooperatively for efficient spindle assembly and cytokinesis.
View Article and Find Full Text PDF