White adipose tissue (WAT) is critical for whole-body energy metabolism, and its dysfunction leads to various metabolic disorders. In recent years, many studies have suggested that impaired mitochondria may contribute to obesity-related decline in adipose tissue function, but the detailed mechanisms remain unclear. To investigate these mechanisms, we carried out a comprehensive analysis of WAT from mice with diet-induced obesity.
View Article and Find Full Text PDFAdiponectin (APN), a major adipokine secreted from white adipose tissue, prevents inflammation and improves insulin sensitivity. APN exists as distinct multimeric complexes with different physiological activities, including low, middle and high molecular weight complexes (LMW, MMW and HMW, respectively) in peripheral blood. Caloric restriction (CR), an intervention that suppresses aging-related pathophysiological changes and extends lifespan, reportedly elevates the expression levels of Adipoq (encoding APN) and total circulating APN.
View Article and Find Full Text PDFAdipocytes, which comprise the majority of white adipose tissue (WAT), are involved in obesity-related pathology via various mechanisms, including disturbed lysosomal enzymatic activity and accumulation of oxidative stress. Sequestosome 1 (SQSTM1/p62) is an autophagy marker that participates in antioxidative responses via the activation of nuclear factor erythroid-derived 2-like 2 (NRF2). Trehalose is a non-reducing disaccharide reported to suppress adipocyte hypertrophy in obese mice and improve glucose tolerance in humans.
View Article and Find Full Text PDF