Publications by authors named "Tomotaka Matsumoto"

Morphological transformations can be generated by evolutionary changes in the sequence of developmental events. In this study, we examined the evolutionary dynamics of the developmental sequence on a macroevolutionary scale in teleosts. Using the information from previous reports describing the development of 31 species, we extracted the developmental sequences of 19 landmark events involving the formation of phylogenetically conserved body parts; we then inferred ancestral developmental sequences by two different parsimony-based methods-event-pairing and continuous analysis.

View Article and Find Full Text PDF

Inferred ancestral nucleotide states are increasingly employed in analyses of within- and between -species genome variation. Although numerous studies have focused on ancestral inference among distantly related lineages, approaches to infer ancestral states in polymorphism data have received less attention. Recently developed approaches that employ complex transition matrices allow us to infer ancestral nucleotide sequence in various evolutionary scenarios of base composition.

View Article and Find Full Text PDF

Polymorphism of alleles that benefit one sex but harm the other (sexually antagonistic alleles) generates selective pressures for reduced recombination between themselves and sex-determination loci. Such polymorphism can be maintained within a population when selection coefficients are sufficiently balanced between males and females. However, if regulatory mutations restrict gene expression only to one sex, these alleles become neutral in the other sex and easily fixed within a population, removing the selective pressures for recombination suppression in sex chromosomes.

View Article and Find Full Text PDF

Sex chromosomes are among the most evolutionarily labile features in some groups of animals. One of the mechanisms causing structural changes of sex chromosomes is fusion with an autosome. A recent study showed that the establishment rates of Y chromosome-autosome fusions are much higher than those of other fusions (i.

View Article and Find Full Text PDF

A growing number of molecular evolutionary studies are estimating the proportion of adaptive amino acid substitutions (α) from comparisons of ratios of polymorphic and fixed DNA mutations. Here, we examine how violations of two of the model assumptions, neutral evolution of synonymous mutations and stationary base composition, affect α estimation. We simulated the evolution of coding sequences assuming weak selection on synonymous codon usage bias and neutral protein evolution, α = 0.

View Article and Find Full Text PDF

Recent studies suggest the existence of a stochasticity in gene expression (SGE) in many organisms, and its non-negligible effect on their phenotype and fitness. To date, however, how SGE affects the key parameters of population genetics are not well understood. SGE can increase the phenotypic variation and act as a load for individuals, if they are at the adaptive optimum in a stable environment.

View Article and Find Full Text PDF

Inference of gene sequences in ancestral species has been widely used to test hypotheses concerning the process of molecular sequence evolution. However, the approach may produce spurious results, mainly because using the single best reconstruction while ignoring the suboptimal ones creates systematic biases. Here we implement methods to correct for such biases and use computer simulation to evaluate their performance when the substitution process is nonstationary.

View Article and Find Full Text PDF

The role of stochasticity in evolutionary genetics has long been debated. To date, however, the potential roles of non-genetic traits in evolutionary processes have been largely neglected. In molecular biology, growing evidence suggests that stochasticity in gene expression (SGE) is common and that SGE has major impacts on phenotypes and fitness.

View Article and Find Full Text PDF

Isolation mechanisms that prevent gene flow between populations prezygotically play important roles in achieving speciation. In flowering plants, the nighttime flowering system provides a mechanism for isolation from diurnally flowering species. Although this system has long been of interest in evolutionary biology, the evolutionary process leading to this system has yet to be elucidated because of the lack of good model species.

View Article and Find Full Text PDF

Although many theoretical studies have reported strong effects of different flowering times on reproductive isolation, such studies have all focused on the different flowering time within a season, and the subsequently developed models are difficult to apply to the cases of diurnal- and nocturnal-flowering species pairs. The different flowering times within a day differ from those within a season because of the simultaneous opening and closing of the flowers for each species and the carry-over of the pollen from early to later times. In this study, we consider pollinator-mediated, diurnal- and nocturnal-flowering plants and build a new model to study the effects of the different flowering times within a day on reproductive isolation.

View Article and Find Full Text PDF

A Pd(OAc)2-SEGPHOS combination catalyzes the first enantioselective arylative cyclization of allenyl aldehydes with arylboronic acids to provide cis-fused five- and six-membered cyclic homoallylic alcohols. The excellent diastereo- and enantioselectivity and the fact that the reaction proceeds at room temperature in the absence of any additives make the process highly practical.

View Article and Find Full Text PDF