Background/objectives: On-site diagnosis of infection in their early stages requires assays with high sensitivities that are compact and easy to operate out of the laboratory and hospital environments. However, current assay technologies fall short of these requirements and require highly skilled technicians to set up, operate, and interpret the results.
Methods: To address these challenges, we developed and evaluated a Point-of-Care-Testing (PoCT) immunoassay platform called the D-strip.
Sangyo Eiseigaku Zasshi
January 2022
Objective: To survey occupational health-related activities conducted at hospitals certified by the Japan Council for Quality Health Care in the Kanto region of Japan.
Methods: The survey tool was sent to 470 hospitals and comprised the following items: hospital size, occupational health system, infection control practices, mental health services, promotion of work system reforms, and priorities in achieving occupational health.
Results: A total of 140 hospitals completed the survey.
Pendrin and prestin belong to the solute carrier 26 (SLC26) family of anion transporters. Prestin is unique among the SLC26 family members in that it displays voltage-driven motor activity (electromotility) and concurrent gating currents that manifest as nonlinear cell membrane electrical capacitance (nonlinear capacitance (NLC)). Although the anion transport mechanism of the SLC26 proteins has begun to be elucidated, the molecular mechanism of electromotility, which is thought to have evolved from an ancestral ion transport mechanism, still remains largely elusive.
View Article and Find Full Text PDFThe CRISPR-associated protein Cas9 is widely used for genome editing because it cleaves target DNA through the assistance of a single-guide RNA (sgRNA). Structural studies have revealed the multi-domain architecture of Cas9 and suggested sequential domain movements of Cas9 upon binding to the sgRNA and the target DNA These studies also hinted at the flexibility between domains; however, it remains unclear whether these flexible movements occur in solution. Here, we directly observed dynamic fluctuations of multiple Cas9 domains, using single-molecule FRET We found that the flexible domain movements allow Cas9 to adopt transient conformations beyond those captured in the crystal structures.
View Article and Find Full Text PDFCa release from the sarcoplasmic reticulum (SR) and endoplasmic reticulum (ER) is crucial for muscle contraction, cell growth, apoptosis, learning and memory. The trimeric intracellular cation (TRIC) channels were recently identified as cation channels balancing the SR and ER membrane potentials, and are implicated in Ca signaling and homeostasis. Here we present the crystal structures of prokaryotic TRIC channels in the closed state and structure-based functional analyses of prokaryotic and eukaryotic TRIC channels.
View Article and Find Full Text PDFBiophysics (Nagoya-shi)
August 2016
Myosin VI is an ATP driven molecular motor that normally takes forward and processive steps on actin filaments, but also on occasion stochastic backward steps. While a number of models have attempted to explain the backwards steps, none offer an acceptable mechanism for their existence. We therefore performed single molecule imaging of myosin VI and calculated the stepping rates of forward and backward steps at the single molecule level.
View Article and Find Full Text PDFMany biological motor molecules move within cells using stepsizes predictable from their structures. Myosin VI, however, has much larger and more broadly distributed stepsizes than those predicted from its short lever arms. We explain the discrepancy by monitoring Qdots and gold nanoparticles attached to the myosin-VI motor domains using high-sensitivity nanoimaging.
View Article and Find Full Text PDFAdenosine triphosphate (ATP) turnover drives various processive molecular motors and adenosine diphosphate (ADP) release is a principal transition in this cycle. Biochemical and single molecule mechanical studies have led to a model in which a slow ADP release step contributes to the processivity of myosin-V. To test the relationship between force generation and ADP release, we utilized optical trapping nanometry and single molecule total internal reflection fluorescence imaging for simultaneous and direct observation of both processes in myosin-V.
View Article and Find Full Text PDFMyosin V is an actin-based processive molecular motor driven by the chemical energy of ATP hydrolysis. Although the chemo-mechanical coupling in processive movement has been postulated by separate structural, mechanical and biochemical studies, no experiment has been able to directly test these conclusions. Therefore the relationship between ATP-turnover and force generation remains unclear.
View Article and Find Full Text PDFCalcium-induced structural transition in the amino-terminal domain of troponin C (TnC) triggers skeletal and cardiac muscle contraction. The salient feature of this structural transition is the movement of the B and C helices, which is termed the "opening" of the N-domain. This movement exposes a hydrophobic region, allowing interaction with the regulatory domain of troponin I (TnI) as can be seen in the crystal structure of the troponin ternary complex [Takeda, S.
View Article and Find Full Text PDF