Publications by authors named "Tomoshige Miyaguchi"

We derive generalized Langevin equations (GLEs) for single beads in linear elastic networks. In particular, the derivations of the GLEs are conducted without employing normal modes, resulting in two distinct representations in terms of resistance and mobility kernels. The fluctuation-dissipation relations are also confirmed for both GLEs.

View Article and Find Full Text PDF

The Bonabeau model of self-organized hierarchy formation is studied by using a piecewise linear approximation to the sigmoid function. Simulations of the piecewise-linear agent model show that there exist two-level and three-level hierarchical solutions and that each agent exhibits a transition from nonergodic to ergodic behaviors. Furthermore, by using a mean-field approximation to the agent model, it is analytically shown that there are asymmetric two-level solutions, even though the model equation is symmetric (asymmetry is introduced only through the initial conditions) and that linearly stable and unstable three-level solutions coexist.

View Article and Find Full Text PDF

We investigate Brownian motion with diffusivity alternately fluctuating between fast and slow states. We assume that sojourn-time distributions of these two states are given by exponential or power-law distributions. We develop a theory of alternating renewal processes to study a relaxation function which is expressed with an integral of the diffusivity over time.

View Article and Find Full Text PDF

We study the relaxation behavior of the Ornstein-Uhlenbeck (OU) process with time-dependent and fluctuating diffusivity. In this process, the dynamics of the position vector is modeled by the Langevin equation with a linear restoring force and a fluctuating diffusivity (FD). This process can be interpreted as a simple model of relaxational dynamics with internal degrees of freedom or in a heterogeneous environment.

View Article and Find Full Text PDF

There have been increasing reports that the diffusion coefficient of macromolecules depends on time and fluctuates randomly. Here a method is developed to elucidate this fluctuating diffusivity from trajectory data. Time-averaged mean-square displacement (MSD), a common tool in single-particle-tracking (SPT) experiments, is generalized to a second-order tensor with which both magnitude and orientation fluctuations of the diffusivity can be clearly detected.

View Article and Find Full Text PDF

Recently, anomalous subdiffusion, aging, and scatter of the diffusion coefficient have been reported in many single-particle-tracking experiments, though the origins of these behaviors are still elusive. Here, as a model to describe such phenomena, we investigate a Langevin equation with diffusivity fluctuating between a fast and a slow state. Namely, the diffusivity follows a dichotomous stochastic process.

View Article and Find Full Text PDF

The mean-square displacement (MSD) is widely utilized to study the dynamical properties of stochastic processes. The time-averaged MSD (TAMSD) provides some information on the dynamics which cannot be extracted from the ensemble-averaged MSD. In particular, the relative standard deviation (RSD) of the TAMSD can be utilized to study the long-time relaxation behavior.

View Article and Find Full Text PDF

Models with mixed origins of anomalous subdiffusion have been considered important for understanding transport in biological systems. Here one such mixed model, the quenched-trap model (QTM) on fractal lattices, is investigated. It is shown that both ensemble- and time-averaged mean-square displacements (MSDs) show subdiffusion with different scaling exponents, i.

View Article and Find Full Text PDF

We study a class of random walk, the stored-energy-driven Lévy flight (SEDLF), whose jump length is determined by a stored energy during a trapped state. The SEDLF is a continuous-time random walk with jump lengths being coupled with the trapping times. It is analytically shown that the ensemble-averaged mean-square displacements exhibit subdiffusion as well as superdiffusion, depending on the coupling parameter.

View Article and Find Full Text PDF

In entangled polymer systems, there are several characteristic time scales, such as the entanglement time and the disengagement time. In molecular simulations, the longest relaxation time (the disengagement time) can be determined by the mean square displacement (MSD) of a segment or by the shear relaxation modulus. Here, we propose the relative fluctuation analysis method, which is originally developed for characterizing large fluctuations, to determine the longest relaxation time from the center of mass trajectories of polymer chains (the time-averaged MSDs).

View Article and Find Full Text PDF

We investigate continuous time random walks with truncated α-stable trapping times. We prove distributional ergodicity for a class of observables; namely, the time-averaged observables follow the probability density function called the Mittag-Leffler distribution. This distributional ergodic behavior persists for a long time, and thus the convergence to the ordinary ergodicity is considerably slower than in the case in which the trapping-time distribution is given by common distributions.

View Article and Find Full Text PDF

Fluctuations in the time-averaged mean-square displacement for random walks on hypercubic lattices with static disorder are investigated. It is analytically shown that the diffusion coefficient becomes a random variable as a manifestation of weak ergodicity breaking. For two- and higher- dimensional systems, the distribution function of the diffusion coefficient is found to be the Mittag-Leffler distribution, which is the same as for the continuous-time random walk, whereas for one-dimensional systems a different distribution (a modified Mittag-Leffler distribution) arises.

View Article and Find Full Text PDF

Nonlinear dynamics of magnetic field lines generated by simple electric current elements are investigated. In general, the magnetic field lines show behavior similar to that of the Hamiltonian systems; in fact, they can be generally transformed into Hamiltonian systems with 1.5 degrees of freedom, obey the Kolmogorov-Arnold-Moser (KAM) theorem, and generate chaotic trajectories.

View Article and Find Full Text PDF

Statistical properties of the transport coefficient for deterministic subdiffusion are investigated from the viewpoint of infinite ergodic theory. We find that the averaged diffusion coefficient is characterized by the infinite invariant measure of the reduced map. We also show that when the time difference is much smaller than the total observation time, the time-averaged mean square displacement depends linearly on the time difference.

View Article and Find Full Text PDF

In various kinds of cultured cells, it has been reported that the membrane potential exhibits fluctuations with long-term correlations, although the underlying mechanism remains to be elucidated. A cardiac muscle cell culture serves as an excellent experimental system to investigate this phenomenon because timings of excitations can be determined over an extended time period in a noninvasive manner through visualization of contractions, although the properties of beat-timing fluctuations of cardiac muscle cells at the single-cell level remains to be fully clarified. In this article, we report on our investigation of spontaneous contractions of cultured rat cardiac muscle cells at the single-cell level.

View Article and Find Full Text PDF
Escape time statistics for mushroom billiards.

Phys Rev E Stat Nonlin Soft Matter Phys

June 2007

Chaotic orbits of the mushroom billiards display intermittent behaviors. We investigate statistical properties of this system by constructing an infinite partition on the chaotic part of a Poincaré surface, which illustrates details of chaotic dynamics. Each piece of the infinite partition has a unique escape time from the half disk region, and from this result it is shown that, for fixed values of the system parameters, the escape time distribution obeys a power law 1/t(esc)(3).

View Article and Find Full Text PDF

We investigate the spectral properties of a one-dimensional piecewise linear intermittent map, which has not only a marginal fixed point but also a singular structure suppressing injections of the orbits into neighborhoods of the marginal fixed point. We explicitly derive generalized eigenvalues and eigenfunctions of the Frobenius-Perron operator of the map for classes of observables and piecewise constant initial densities, and it is found that the Frobenius-Perron operator has two simple real eigenvalues 1 and lambda(d) Epsilon (-1,0) and a continuous spectrum on the real line [0,1]. From these spectral properties, we also found that this system exhibits a power law decay of correlations.

View Article and Find Full Text PDF