The crystallographic preferred orientation (CPO) of olivine produced during dislocation creep is considered to be the primary cause of elastic anisotropy in Earth's upper mantle and is often used to determine the direction of mantle flow. A fundamental question remains, however, as to whether the alignment of olivine crystals is uniquely produced by dislocation creep. Here we report the development of CPO in iron-free olivine (that is, forsterite) during diffusion creep; the intensity and pattern of CPO depend on temperature and the presence of melt, which control the appearance of crystallographic planes on grain boundaries.
View Article and Find Full Text PDFThe unusual capability of solid crystalline materials to deform plastically, known as superplasticity, has been found in metals and even in ceramics. Such superplastic behaviour has been speculated for decades to take place in geological materials, ranging from surface ice sheets to the Earth's lower mantle. In materials science, superplasticity is confirmed when the material deforms with large tensile strain without failure; however, no experimental studies have yet shown this characteristic in geomaterials.
View Article and Find Full Text PDF