Publications by authors named "Tomonori Deguchi"

Bilateral communication between bones and muscles is essential for healing composite bone-muscle injuries from orthopedic surgeries and trauma. However, these injuries are often characterized by exaggerated inflammation, which can disrupt bone-muscle crosstalk, thereby seriously delaying the healing of either tissue. Existing approaches are largely effective at healing single tissues.

View Article and Find Full Text PDF

Radial glial cells (RGCs) play an essential role in developing, maintaining, and repairing the central nervous system (CNS). However, a specific reporter line of RGCs is limited in medaka. Glial fibrillary acid protein (GFAP) is abundant in teleost CNS, including the brain and spinal cord, and is a possible candidate for a marker for RGCs in medaka CNS.

View Article and Find Full Text PDF

A hierarchically organized lymphatic vascular system extends throughout the vertebrate body for tissue fluid homeostasis, immune trafficking, and the absorption of dietary fats. Intralymphatic dye injection and serial sectioning have been the main tools for visualizing lymphatic vessels. Specific markers for identifying the lymphatic vasculature in zebrafish and medaka have appeared as new tools that enable the study of lymphangiogenesis using genetic and experimental manipulation.

View Article and Find Full Text PDF

The lymphatic system comprises blind-ended tubes that collect interstitial fluid and return it to the circulatory system. In mammals, unidirectional lymphatic flow is driven by muscle contraction working in conjunction with valves. Accordingly, defective lymphatic valve morphogenesis results in backflow leading to edema.

View Article and Find Full Text PDF

Lamin is an intermediate protein underlying the nuclear envelope and it plays a key role in maintaining the integrity of the nucleus. A defect in the processing of its precursor by a metalloprotease, ZMPSTE24, results in the accumulation of farnesylated prelamin in the nucleus and causes various diseases, including Hutchinson-Gilford progeria syndrome (HGPS). However, the role of lamin processing is unclear in fish species.

View Article and Find Full Text PDF

Xeroderma pigmentosum group A (XP-A) is a genetic disorder in which there is an abnormality in nucleotide excision repair that causes hypersensitivity to sunlight and multiple skin cancers. The development of central and peripheral neurological disorders not correlated to ultraviolet light exposure is associated with XP-A. The genes responsible for XP-A have been identified and a XPA knockout mouse has been generated.

View Article and Find Full Text PDF

Non-neuronal acetylcholine (ACh) is predicted to function as a local cell signaling molecule. However, the physiological significance of the synthesis of non-neuronal ACh in the intestine remains unclear. Here, experiments using crypt-villus organoids that lack nerve and immune cells in culture led us to suggest that endogenous ACh is synthesized in the intestinal epithelium to evoke growth and differentiation of the organoids through activation of muscarinic ACh receptors (mAChRs).

View Article and Find Full Text PDF

Objective: Infrared laser-evoked gene operator is a new microscopic method optimized to heat cells in living organisms without causing photochemical damage. By combining the promoter system for the heat shock response, infrared laser-evoked gene operator enables laser-mediated gene induction in targeted cells. We applied this method to the vascular system in zebrafish embryos and demonstrated its usability to investigate mechanisms of vascular morphogenesis in vivo.

View Article and Find Full Text PDF

In the genome of eukaryotic organisms, each protein-coding gene has the unique promoter in the 5'-flanking region, and the direction of the promoter is usually controlled unidirectional. In this study, we revealed that the intergenic region between TATA-box binding protein (tbp) and proteasome subunit C3 (psmc3) genes in Medaka functions as bidirectional promoter in vitro and in vivo. The tbp and psmc3 genes were allocated as a head-to-head configuration with a 719bp intergenic region.

View Article and Find Full Text PDF

Intracellular transport is spatiotemporally controlled by microtubule-dependent motor proteins, including kinesins. In order to elucidate the mechanisms controlling kinesin expression, it is important to analyze their genomic regulatory regions. In this study, we cloned the neuronal tissue-specific kinesin in medaka fish and generated transgenic fish which mimic endogenous neuronal kinesin expression in order to elucidate the mechanisms which regulate kinesin expression.

View Article and Find Full Text PDF

G protein-coupled receptors are critical regulators of diverse developmental processes such as oocyte maturation, fertilization, gastrulation, and organogenesis. To further study the molecular mechanisms underlying these processes, we cloned and characterized the orphan leucine-rich repeat-containing G protein-coupled receptor 6 (LGR6), a stem cell marker in mammalian hair follicles, in medaka fish, Oryzias latipes. To examine the expression pattern of lgr6, we performed whole-mount in situ hybridization (WISH) during embryogenesis.

View Article and Find Full Text PDF

The development of optical methods to control cellular functions is important for various biological applications. In particular, heat shock promoter-mediated gene expression systems by laser light are attractive targets for controlling cellular functions. However, previous approaches have considerable technical limitations related to their use of UV, short-wavelength visible (vis), and infrared (IR) laser light, which have poor penetration into biological tissue.

View Article and Find Full Text PDF

Feline McDonough Sarcoma (FMS)-like tyrosine kinase 4 (FLT4) is a marker for lymphatic vessels and some high endothelial venules in human adult tissues. We generated a transgenic medaka fish in which the lymphatic vessels and some blood vessels are visible in vivo by transferring the promoter of medaka flt4 driving the expression of enhanced green fluorescent protein (EGFP) using a see-through medaka line. To do this, we identified and cloned medaka flt4 and generated a construct in which the promoter was the 4-kb region upstream of the translation initiation site.

View Article and Find Full Text PDF

The Col2a1 gene is expressed in notochord, otic vesicle, cartilaginous tissue and the anlage of endochondral bone during development in higher vertebrates. Type II collagen, a homotrimeric product of the Col2a1 gene, functions as a key regulatory protein for cartilage development and endochondral ossification. In medaka and zebrafish, a single homolog of the col2a1 gene has been identified.

View Article and Find Full Text PDF

Various mesenchymal stromal cells (MSCs) have been applied to regenerative medicine. MSCs derived from periodontal tissue could also be a useful cell source for alveolar bone regeneration. However, only a few attempts of direct comparisons have been made between MSCs from periodontal tissues and those from other somatic tissues.

View Article and Find Full Text PDF

Background: During the last two decades, DNA sequencing has led to the identification of numerous genes in key species; however, in most cases, their functions are still unknown. In this situation, reverse genetics is the most suitable method to assign function to a gene. TILLING (Targeting Induced Local Lesions IN Genomes) is a reverse-genetic strategy that combines random chemical mutagenesis with high-throughput discovery of the induced mutations in target genes.

View Article and Find Full Text PDF

Heat shock protein promoters (hsp promoters) are powerful tools for investigating gene functions, as the expression of targeted genes can be controlled simply by heating. However, there have been no reports of the utilization of an endogeneous medaka (Oryzias latipes) hsp promoter to induce exogenous gene expression in medaka. We identified and cloned a functional medaka hsp promoter (olphsp70.

View Article and Find Full Text PDF

Heat shock promoters are powerful tools for the precise control of exogenous gene induction in living organisms. In addition to the temporal control of gene expression, the analysis of gene function can also require spatial restriction. Recently, we reported a new method for in vivo, single-cell gene induction using an infrared laser-evoked gene operator (IR-LEGO) system in living nematodes (Caenorhabditis elegans).

View Article and Find Full Text PDF

Background: Pmp22, a member of the junction protein family Claudin/EMP/PMP22, plays an important role in myelin formation. Increase of pmp22 transcription causes peripheral neuropathy, Charcot-Marie-Tooth disease type1A (CMT1A). The pathophysiological phenotype of CMT1A is aberrant axonal myelination which induces a reduction in nerve conduction velocity (NCV).

View Article and Find Full Text PDF

Prox1 is a prospero-related homeobox gene. Prox1 is expressed in various internal organs and is related to those differentiations. Small fishes such as the zebrafish and the medaka are useful model animals in the clarification of the mechanism of development.

View Article and Find Full Text PDF

Egr1 and Egr3 are zinc finger-type transcription factors and known as synaptic activity-inducible immediate-early genes. Egr1 also plays important roles in many aspects of vertebrate development. Egr3 is known as the gene that is related to biological rhythm and muscular development, but its behavior in the central nervous system during development is not clear.

View Article and Find Full Text PDF

We developed infrared laser-evoked gene operator (IR-LEGO), a microscope system optimized for heating cells without photochemical damage. Infrared irradiation causes reproducible temperature shifts of the in vitro microenvironment in a power-dependent manner. When applied to living Caenorhabditis elegans, IR-LEGO induced heat shock-mediated expression of transgenes in targeted single cells in a more efficient and less deleterious manner than a 440-nm dye laser and elicited physiologically relevant phenotypic responses.

View Article and Find Full Text PDF

The transparent bodies of see-through medaka fish has led to their use as models for in vivo cell and tissue imaging. However, these fish may also prove useful as models for pathological processes. Accumulating reports show that pathology in fish is similar to that in mammals, including humans.

View Article and Find Full Text PDF

Genes expressed by neurons are controlled by specific, interacting cis-regulatory elements and trans-acting factors within their promoters. In the present study, we asked whether the transcriptional machinery regulating neuron-specific gene expression was conserved in evolution. We identified a GAP-43 homolog in Medaka (Oryzias latipes), and analyzed its expression during various stages of development.

View Article and Find Full Text PDF

We have established a reverse genetics approach for the routine generation of medaka (Oryzias latipes) gene knockouts. A cryopreserved library of N-ethyl-N-nitrosourea (ENU) mutagenized fish was screened by high-throughput resequencing for induced point mutations. Nonsense and splice site mutations were retrieved for the Blm, Sirt1, Parkin and p53 genes and functional characterization of p53 mutants indicated a complete knockout of p53 function.

View Article and Find Full Text PDF