Publications by authors named "Tomomi Ohmura"

Objective: Hyperdense artery sign (HAS) on noncontrast brain computed tomography (CT) indicates an acute thrombus within the cerebral artery. It is a valuable imaging biomarker for diagnosing large-vessel occlusion; however, its identification may be challenging with the presence of vascular calcification. Dual-energy CT virtual noncalcium (VNCa) imaging using a 3-material decomposition algorithm is helpful for differentiating between calcification and hemorrhage.

View Article and Find Full Text PDF
Article Synopsis
  • X-map is a new non-contrast dual-energy CT application designed to identify early ischemic changes (EIC) in acute ischemic stroke (AIS) patients, with a focus on its performance compared to traditional imaging methods like DWI and mixed-CT images.
  • The study involved 50 AIS patients, and findings indicated that X-map showed strong correlation with DWI results, successfully identifying EIC in areas often missed by other imaging techniques, particularly in deep white matter.
  • Overall, X-map demonstrated moderate accuracy and could be a valuable tool for detecting EIC in cases where conventional imaging falls short, especially in cortical regions.
View Article and Find Full Text PDF

Background: Head computed tomography (CT) is a commonly used imaging modality in radiology facilities. Since multiplanar reconstruction (MPR) processing can produce different results depending on the medical staff in charge, there is a possibility that the antemortem and postmortem images of the same person could be assessed and identified differently.

Objective: To propose and test a new automatic MPR method in order to address and overcome this limitation.

View Article and Find Full Text PDF

In computed tomography (CT) systems, the optimal X-ray energy in imaging depends on the material composition and the subject size. Among the parameters related to the X-ray energy, we can arbitrarily change only the tube voltage. For years, the tube voltage has often been set at 120 kVp.

View Article and Find Full Text PDF

Purpose: To evaluate suitable iterative metal artifact reduction (iMAR) presets for titanium neurosurgical clips and burr hole covers (BHCs) on postoperative non-contrast computed tomography (NCCT).

Method: Twenty-two patients who underwent NCCT after intracranial aneurysmal clipping were included. NCCT images were postprocessed using eight currently available iMAR presets.

View Article and Find Full Text PDF

Purpose: To evaluate the usefulness of deep learning-assisted diagnosis for identifying hyperdense middle cerebral artery sign (HMCAS) on non-contrast computed tomography in comparison with the diagnostic performance of neuroradiologists.

Materials And Methods: We obtained 46 HMCAS-positive and 52 HMCAS-negative test samples extracted using 50-pixel-diameter circular regions of interest. Five neuroradiologists undertook an initial diagnostic performance test by describing the HMCAS-positive prediction rate in each sample.

View Article and Find Full Text PDF

Purpose: To clarify the utility of dual energy CT (DECT) virtual non-calcium (VNCa) imaging for investigating lumbar intervertebral disc degeneration.

Method: Fifty-three patients who underwent both DECT and MR imaging were retrospectively reviewed. Midsagittal T2-weighted imaging findings of all discs were classified based on modified Pfirrmann grade (mPG).

View Article and Find Full Text PDF

Purpose: The aim of this study was to develop an interactive deep learning-assisted identification of the hyperdense middle cerebral artery (MCA) sign (HMCAS) on non-contrast computed tomography (CT) among patients with acute ischemic stroke.

Materials And Methods: 35 HMCAS-positive and 39 HMCAS-negative samples extracted by 50-pixel-diameter circular regions of interest were obtained as training and validation datasets according to the consensus decisions of two experienced neuroradiologists. Data augmentation was performed to increase the number of training samples.

View Article and Find Full Text PDF

is a major etiological agent of sepsis and induces endothelial cell (EC) barrier dysfunction and inflammation, two major hallmarks of acute lung injury. However, the molecular mechanisms of bacterial pathogen-induced EC barrier disruption are incompletely understood. Here, we investigated the role of microtubules (MT) in the mechanisms of EC barrier compromise caused by heat-killed (HKSA).

View Article and Find Full Text PDF

Particulate matter (PM) air pollution is a global environmental health problem contributing to more severe lung inflammation and injury. However, the molecular and cellular mechanisms of PM-induced exacerbation of lung barrier dysfunction and injury are not well understood. In the current study, we tested a hypothesis that PM exacerbates vascular barrier dysfunction via ROS-induced generation of truncated oxidized phospholipids (Tr-OxPLs).

View Article and Find Full Text PDF

Exposure to particulate matter (PM) associated with air pollution remains a major public health concern, as it has been linked to significant increase in cardiopulmonary morbidity and mortality. Lung endothelial cell (EC) dysfunction is one of the hallmarks of cardiovascular events of lung exposure to PM. However, the role of PM in acute lung injury (ALI) exacerbation and delayed recovery remains incompletely understood.

View Article and Find Full Text PDF

Purpose: CT perfusion (CTP) is a powerful tool for the assessment of cerebrovascular disease. However, CTP maps are significantly different depending on CTP software and algorithm, even when using identical image data. We developed a phase-ratio image map (PI map), which was a novel perfusion map, without using CTP software.

View Article and Find Full Text PDF

The role of prostaglandin A2 (PGA2) in modulation of vascular endothelial function is unknown. We investigated effects of PGA2 on pulmonary endothelial cell (EC) permeability and inflammatory activation and identified a receptor mediating these effects. PGA2 enhanced the EC barrier and protected against barrier dysfunction caused by vasoactive peptide thrombin and proinflammatory bacterial wall lipopolysaccharide (LPS).

View Article and Find Full Text PDF

Rapid changes in microtubule (MT) polymerization dynamics affect regional activity of small GTPases RhoA and Rac1, which play a key role in the regulation of actin cytoskeleton and endothelial cell (EC) permeability. This study tested the role of End Binding Protein-1 (EB1) in the mechanisms of increased and decreased EC permeability caused by thrombin and hepatocyte growth factor (HGF) and mediated by RhoA and Rac1 GTPases, respectively. Stimulation of human lung EC with thrombin inhibited peripheral MT growth, which was monitored by morphological and biochemical evaluation of peripheral MT and the levels of stabilized MT.

View Article and Find Full Text PDF

CT perfusion (CTP) is obtained cerebrovascular circulation image for assessment of stroke patients; however, at the expense of increased radiation dose by dynamic scan. Iterative reconstruction (IR) method is possible to decrease image noise, it has the potential to reduce radiation dose. The purpose of this study is to assess the visual effect of IR method by using a digital perfusion phantom.

View Article and Find Full Text PDF

The volume of the temporal horn of the lateral ventricle (THLV) on brain computed tomography (CT) images is important for neurologic diagnosis. Our purpose in this study was to develop a z-score-based semi-quantitative analysis for estimation of the THLV volume by using voxel-based morphometry. The THLV volume was estimated by use of a z-score mapping method that consisted of four main steps: anatomic standardization, construction of a normal reference database, calculation of the z score, and calculation of the mean z score in a volume of interest (VOI).

View Article and Find Full Text PDF

In the bolus tracking technique with computed tomography (CT) or magnetic resonance imaging, cerebral blood flow (CBF) is computed from deconvolution analysis, but its accuracy is unclear. To evaluate the reliability of CT perfusion (CTP)-derived CBF, we examined 27 patients with symptomatic or asymptomatic unilateral cerebrovascular steno-occlusive disease. Results from three deconvolution algorithms, standard singular value decomposition (sSVD), delay-corrected SVD (dSVD), and block-circulant SVD (cSVD), were compared with (15)O positron emission tomography (PET) as a reference standard.

View Article and Find Full Text PDF

Otx2 plays essential roles in each site at each step of head development. We previously identified the AN1 enhancer at 91kb 5' upstream for the Otx2 expressions in anterior neuroectoderm (AN) at neural plate stage before E8.5, and the FM1 enhancer at 75kb 5' upstream and the FM2 enhancer at 122kb 3' downstream for the expression in forebrain/midbrain (FM) at brain vesicle stage after E8.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the image noise reduction effect of iterative reconstruction (IR) when used to reduce radiation exposure during computed tomography (CT) perfusion. We scanned a contrast phantom using various radiation doses. Image reconstruction was via filtered back projection (FBP) and IR (adaptive iterative dose reduction 3D: AIDR3D).

View Article and Find Full Text PDF

Background: NUAK1 and NUAK2, members of the AMP-activated protein kinase family of serine/threonine kinases, are prominently expressed in neuroectoderm, but their functions in neurulation have not been elucidated.

Results: NUAK1 and NUAK2 double mutants exhibited exencephaly, facial clefting, and spina bifida. Median hinge point was formed, but dorsolateral hinge point formation was not apparent in cranial neural plate; neither apical constriction nor apico-basal elongation took place efficiently in the double mutants during the 5-10-somite stages.

View Article and Find Full Text PDF

In mouse Otx2 plays essential roles in anterior-posterior axis formation and head development in anterior visceral endoderm and anterior mesendoderm. The Otx2 expression in these sites is regulated by VE and CM enhancers at the 5' proximal to the translation start site, and we proposed that these enhancers would have been established in ancestral sarcoptergians after divergence from actinopterigians for the use of Otx2 as the head organizer gene (Kurokawa et al., 2010).

View Article and Find Full Text PDF

Objective: The 320-detector row computed tomography (CT) can provide whole-brain CT perfusion (CTP) maps with continuous angiographic images by performing a single dynamic scan. We investigated the reliability of CTP cerebral blood flow (CTP-CBF) with 320-detector row CT by comparing findings with O-positron emission tomography (PET-CBF).

Methods: Whole-brain CTP and PET were performed in 10 patients with chronic unilateral steno-occlusive disease.

View Article and Find Full Text PDF

In the mouse, the Otx2 gene has been shown to play essential roles in the visceral endoderm during anterior-posterior axis formation and head induction. While these are primary processes in vertebrate embryogenesis, the visceral endoderm is a tissue unique to mammals. Two enhancers (VE and CM) have been previously found to direct Otx2 expression during early embryogenesis.

View Article and Find Full Text PDF