Publications by authors named "Tomomi Noguchi-Yachide"

Article Synopsis
  • The research focuses on developing new drug candidates by increasing structural diversity in medicinal chemistry, specifically through the design of -hydroxyphenyl phosphine borane derivatives.
  • The synthesized derivatives showed good stability in water, less hydrophobicity compared to alkanes and silanes, and adequate affinity for lipid membranes, which is important for drug permeability.
  • Some of the -hydroxyphenyl phosphine borane derivatives demonstrated significant activity as estrogen receptor agonists, highlighting the potential of this framework in drug discovery.
View Article and Find Full Text PDF

Liver X receptor (LXR) α and LXRβ are nuclear receptors playing key roles in lipid metabolism, and LXR ligands are attractive drug candidates for metabolic disorders. Here we report the structural development of 4-(1,1,1,3,3,3-hexafluoro-2-hydroxyprop-2-yl)phenylsilane derivatives as LXR agonists bearing silyl functionalities as the hydrophobic pharmacophore, based on the structure of the known sulfonamide LXR agonist T0901317. Most of the synthesized compounds exhibit agonistic activity toward LXRs, but the LXR subtype-selectivity differs depending upon the substituents on the silicon atom.

View Article and Find Full Text PDF

Niemann-Pick disease type C is a rare, fatal neurodegenerative disorder characterized by massive intracellular accumulation of cholesterol. In most cases, loss-of-function mutations in the NPC1 gene that encodes lysosomal cholesterol transporter NPC1 are responsible for the disease, and more than half of the mutations are considered to interfere with the biogenesis or folding of the protein. We previously identified a series of oxysterol derivatives and phenanthridine-6-one derivatives as pharmacological chaperones, i.

View Article and Find Full Text PDF

Selective estrogen receptor (ER) down-regulators (SERDs) are pure ER antagonists that also induce ER degradation upon binding to the receptor. Although SERDs have been developed for the treatment of ER-positive breast cancers for nearly a decade, their precise mechanism(s) of action and structure-activity relationship are still unclear. Generally, Western blotting is used to examine the effects of SERDs on ER protein levels, but the methodology is low-throughput and not quantitative.

View Article and Find Full Text PDF

The estrogen receptor (ER), a member of the nuclear receptor (NR) family, is involved in the regulation of physiological effects such as reproduction and bone homeostasis. Approximately 70% of human breast cancers are hormone-dependent and ERα-positive, and, thus, ER antagonists are broadly used in breast cancer therapy. We herein designed and synthesized a set of ER antagonists with a 4-heterocycle-4-phenylheptane skeleton.

View Article and Find Full Text PDF

Epigenetic regulation of gene expression via histone acetylation modulates many cellular processes, including apoptosis, the cell cycle, cell growth and differentiation, and inhibitors are promising drug candidates. We have previously developed inhibitors of BRD4, which recognizes acetylated lysine residue on histones and recruits transcription elongation factor to the transcription start site, while inhibitors of histone deacetylase (HDAC), which catalyzes the removal of acetyl groups on histones, are already in clinical use for cancer treatment. Based on the idea that polypharmacological agents with multiple targets would have a more robust action, we set out to develop dual BRD4/HDAC inhibitors.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptors (PPARs) are important drug targets for treatment of dyslipidemia, type 2 diabetes, cardiovascular disease, nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, and great efforts have been made to develop novel PPAR ligands. However, most existing PPAR ligands contain a carboxylic acid (CA) or thiazolidinedione (TZD) structure (acidic head group) that is essential for activity. We recently discovered non-CA/TZD class PPARα/δ partial agonists, which contain an acetamide moiety and adjacent methyl group, linked to a 1,2,4-oxadiazole ring ("fragment a").

View Article and Find Full Text PDF

Niemann-Pick disease type C is a fatal, progressive neurodegenerative disease mostly caused by mutations in Nieamnn-Pick type C1 (NPC1), a late endosomal membrane protein that is essential for intracellular cholesterol transport. The most prevalent mutation, I1061T (Ile to Thr), interferes with the protein folding process. Consequently, mutated but intrinsically functional NPC1 proteins are prematurely degraded via proteasome, leading to loss of NPC1 function.

View Article and Find Full Text PDF

The peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors that contribute to the regulation of lipid, glucose and cholesterol homeostases. They are considered as therapeutic targets for metabolic diseases such as dyslipidemia and type 2 diabetes mellitus. Various PPAR agonists have been developed, but most of them contain a carboxylic acid (CA) or thiazolidinedione (TZD) moiety, which is essential for the activity.

View Article and Find Full Text PDF

Acetyl-CoA carboxylases (ACCs) catalyze a critical step in de novo lipogenesis, and are considered as promising targets for treatment of obesity, dyslipidemia and type 2 diabetes mellitus. On the other hand, peroxisome proliferator-activated receptors (PPARs) are well-established therapeutic targets for these metabolic syndrome-related diseases. Therefore, we considered that dual modulators of ACC and PPARs would be promising candidates as therapeutic agents.

View Article and Find Full Text PDF

Bromodomains are epigenetic 'readers' of histone acetylation. The first potent bromodomain and extra-terminal domain (BET) inhibitors, (+)-JQ1 and I-BET762 (also known as GSK525762), were reported in 2010. Some BET inhibitors are already under clinical trial for the treatment of cancers, but so far, only a few chemical scaffolds are available.

View Article and Find Full Text PDF

Acetylation of histone is a key epigenetic modification, and contributes to many DNA-dependent cellular processes. The bromodomain structure, which consists of approximately 110 amino acid residues, serves as a 'reader' that recognizes acetylated lysine in histones, leading to recruitment of positive transcriptional elongation factor b (P-TEFb), and thereby promoting transcriptional activity and chromatin remodeling. Among bromodomain-containing proteins, members of the bromodomain and extra-terminal domain (BET) family contain tandem N-terminal bromodomains.

View Article and Find Full Text PDF

Vitamin D receptor (VDR) is a family of nuclear receptors (NR) that regulates physiological effects such as the immune system, calcium homeostasis, and cell proliferation. We synthesized non-secosteroidal VDR ligands bearing a long alkyl chain based on the diphenylpentane skeleton. The VDR-mediated transcriptional activities of the synthesized compounds were evaluated using a reporter gene assay and HL-60 cell differentiation-inducing assay.

View Article and Find Full Text PDF

Bromodomain and extra-terminal domain (BET) proteins are epigenetic readers that bind to acetylated lysines in histones. Among them, BRD4 is a candidate target molecule of therapeutic agents for diverse diseases, including cancer and inflammatory disease. As a part of our continuing structural development studies of thalidomide to obtain a broad spectrum of biological modifiers based on the 'multi-template' approach, in this work we focused on BRD4-inhibitory activity, and discovered that N6-benzoyladenine derivatives exhibit this activity.

View Article and Find Full Text PDF

Niemann-Pick disease type C is a fatal neurodegenerative disease, and its major cause is mutations in NPC1 gene. This gene encodes NPC1 protein, a late endosomal polytopic membrane protein required for intracellular cholesterol trafficking. One prevalent mutation (I1061T) has been shown to cause a folding defect, which results in failure of endosomal localization of the protein, leading to loss-of-function phenotype.

View Article and Find Full Text PDF

Suppression of vitamin D receptor (VDR)-mediated transcription is expected to be of therapeutic value in Paget's disease of bone. It is known that interaction between VDR and coactivators is necessary for VDR transactivation, and the interaction occurs when VDR recognizes an LXXLL peptide motif of coactivators. We previously reported that benzodiazepine derivatives designed as LXXLL peptide mimetics inhibited the interaction of VDR and coactivators, and reduced VDR transcription.

View Article and Find Full Text PDF

Polo-like kinase (Plk) 1 is a serine-threonine protein kinase that plays a role in cell division, and its overexpression is highly correlated with aggressiveness and prognosis of many cancers. We have designed, synthesized and evaluated a series of terphenyl compounds as inhibitors of the kinase activity of Plk1. Some of them act as non-ATP-competitive Plk1 inhibitors.

View Article and Find Full Text PDF

A structure consisting of substituted hydantoin linked to a 5-(halophenyl)furan-2-yl group via an amide bond was identified as a promising scaffold for development of low-molecular-weight therapeutic agents to treat vascular dysfunction, including ischemia/reperfusion injury. Among the compounds synthesized, 5-(3,5-dichlorophenyl)-N-{2,4-dioxo-3-[(pyridin-3-yl)methyl]imidazolidin-1-yl}-2-furamide (17) possessed the most potent inhibitory activity against Ca(2+)-induced mitochondrial swelling. The structural development, synthesis and structure-activity relationship of these compounds are described.

View Article and Find Full Text PDF

To obtain novel transrepression-selective liver X receptor (LXR) ligands, we adopted a strategy of reducing the transactivational agonistic activity of the 5,11-dihydro-5-methyl-11-methylene-6H-dibenz[b,e]azepin-6-one derivative 10, which exhibits LXR-mediated transrepressional and transactivational activity. Structural modification of 10 based on the reported X-ray crystal structure of the LXR ligand-binding domain led to a series of compounds, of which almost all exhibited transrepressional activity at 1 or 10 μM but showed no transactivational activity even at 30 μM. Among the compounds obtained, 18 and 22 were confirmed to have LXR-dependent transrepressional activity by using peritoneal macrophages from wild-type and LXR-null mice.

View Article and Find Full Text PDF

We have proposed a multi-template approach for drug development, focusing on similar fold structures of proteins, and have effectively generated lead compounds for several drug targets. Modification of these polypharmacological lead compounds is then needed to generate target-selective compounds. In the work presented here, we aimed at separation of the anti-androgen activity and vitamin D activity of previously identified diphenylpentane lead compounds.

View Article and Find Full Text PDF

Suppression of vitamin D receptor (VDR)-mediated transcription is expected be of therapeutic value in Paget's disease. Once an agonist activates VDR, recruitment of additional coactivator proteins is essential for transcription. Neither non-secosteroidal VDR antagonists nor non-peptide coactivator binding inhibitors for VDR have been reported so far.

View Article and Find Full Text PDF

The physiological role of aryl hydrocarbon receptor (AhR) is not yet fully understood, and investigation is hampered by the limited solubility of reported AhR ligands in aqueous media. To achieve improved solubility, we focused on our previous finding that planarity-disruption of molecules leads to less efficient crystal packing and greater aqueous solubility. Here, we describe chemical modification of an AhR agonist, beta-naphthoflavone, focusing on planarity-disruption.

View Article and Find Full Text PDF

Fusarielin A (FSA), isolated from culture of Fusarium sp. K432, has anti-fungal/anti-angiogenic activity. Based on our previous structure-activity relationship studies, we prepared FSA-immobilized affinity gel.

View Article and Find Full Text PDF

Liver X receptor (LXR) alpha/beta dual agonists are candidate medicaments for the treatment of metabolic syndrome, because their biological actions include increasing cholesterol efflux mediated by LXRbeta. However, their clinical application is currently limited by their enhancing effect on triglyceride (TG) synthesis mediated by LXRalpha. Combination of an LXRalpha-selective antagonist with an LXRalpha/beta dual agonist may overcome this disadvantage.

View Article and Find Full Text PDF

3,3'-Diindolylmethane (DIM, 1) and its derivatives have been prepared, and their enhancing effects on chemically-induced HL-60 cell differentiation were analyzed. Among the prepared compounds, IndDIM (12) showed the most potent enhancing effect on HL-60 cell differentiation induced by chemicals, including retinoids, 1,25-dihydroxyvitamin D(3), 12-O-tetradecanoyl phorbol-13-acetate and dimethyl sulfoxide.

View Article and Find Full Text PDF