The basic scheme of odor perception and signaling from olfactory cilia to the brain is well understood. However, factors that affect olfactory acuity of an animal, the threshold sensitivity to odorants, are less well studied. Using signal sequence trap screening of a mouse olfactory epithelium cDNA library, we identified a novel molecule, Goofy, that is essential for olfactory acuity in mice.
View Article and Find Full Text PDFBoth genes and the environment are determinants in the susceptibility to allergies and may alter the severity of the disease. We explored whether an increase in the levels of the lipid mediator S1P in vivo, a condition found during allergic asthma, could affect the sensitivity or the response of MCs to IgE/Ag and the onset of allergic disease. We found that increasing S1P levels by genetic deletion of S1P lyase, the enzyme catabolizing S1P, led to elevated activity of circulating tryptase.
View Article and Find Full Text PDFOlfactory sensory neurons expressing a given odorant receptor converge axons onto a few topographically fixed glomeruli in the olfactory bulb, leading to establishment of the odor map. Here, we report that BIG-2/contactin-4, an axonal glycoprotein belonging to the immunoglobulin superfamily, is expressed in a subpopulation of mouse olfactory sensory neurons. A mosaic pattern of glomerular arrangement is observed with strongly BIG-2-positive, weakly positive, and negative axon terminals in the olfactory bulb, which is overlapping but not identical with those of Kirrel2 and ephrin-A5.
View Article and Find Full Text PDF