Publications by authors named "Tomomi Hashidate"

Platelet-activating factor (PAF) is a potent pro-inflammatory phospholipid mediator. In response to extracellular stimuli, PAF is rapidly biosynthesized by lyso-PAF acetyltransferase (lyso-PAFAT). Previously, we identified two types of lyso-PAFATs: lysophosphatidylcholine acyltransferase (LPCAT)1, mostly expressed in the lungs where it produces PAF and dipalmitoyl-phosphatidylcholine essential for respiration, and LPCAT2, which biosynthesizes PAF and phosphatidylcholine (PC) in the inflammatory cells.

View Article and Find Full Text PDF

Cellular membranes are composed of numerous kinds of glycerophospholipids with different combinations of polar heads at the sn-3 position and acyl moieties at the sn-1 and sn-2 positions, respectively. The glycerophospholipid compositions of different cell types, organelles, and inner/outer plasma membrane leaflets are quite diverse. The acyl moieties of glycerophospholipids synthesized in the de novo pathway are subsequently remodeled by the action of phospholipases and lysophospholipid acyltransferases.

View Article and Find Full Text PDF

Leukotriene B(4) type-1 receptor (BLT1), which plays a role in various inflammatory diseases, is exclusively expressed in peripheral leukocytes, which suggests that its expression is stringently regulated. However, the precise mechanism of BLT1 expression is not fully understood. Here we report that acute myeloid leukemia 1 (AML1/Runx1) is involved in the enhancement of BLT1 expression in leukocytes.

View Article and Find Full Text PDF

Several residues are conserved in the transmembrane domains (TMs) of G-protein coupled receptors. Here we demonstrate that a conserved proline, Pro(247), in TM6 of platelet-activating factor receptor (PAFR) is required for endoplasmic reticulum (ER) export and trafficking after agonist-induced internalization. Alanine-substituted mutants of the conserved residues of PAFRs, including P247A, were retained in the ER.

View Article and Find Full Text PDF

G2 accumulation (G2A) is a G-protein coupled receptor, activated by several ligands and stimuli, such as lysophosphatidylcholine (LPC), extracellular low pH and oxidized phospholipids including 9- and 13-hydroxyoctadecadienoic acid, and has been implicated in mediating inflammatory process under oxidative conditions. Recently, it was demonstrated that G2A in monocytes/macrophages plays critical roles in atherosclerosis deterioration, and therefore its transcriptional regulation in monocytes/macrophages is of great interest. Here, we first confirmed the expression of human G2A (hG2A) in lymph nodes, spleen and peripheral blood leukocytes, including monocytes.

View Article and Find Full Text PDF

Many G protein-coupled receptors (GPCRs) possess a putative cytoplasmic helical domain, termed helix 8 (H8), at the proximal region of the C-terminal tail. However, the significance of this domain is not fully understood. Here, we demonstrate the requirement of H8 for the proper folding of GPCRs for passage through the quality control in the endoplasmic reticulum (ER).

View Article and Find Full Text PDF

Leishmania parasites are the causative agents of leishmaniasis, manifesting itself in a species-specific manner. The glycan epitopes on the parasite are suggested to be involved in the Leishmania pathogenesis. One of such established species-unique glycan structures is the poly-beta-galactosyl epitope (Galbeta1-3)n found on L.

View Article and Find Full Text PDF

Protein glycosylation is a critical issue of post-genome science not only because it is one of the major post-translational modifications but also because it has significant effects on protein properties and functions. The glyco-catch method was recently developed as a novel affinity technique for comprehensive analysis of glycoproteins in the context of glycomics, which is defined as research targeting the whole set of glycans produced in an organism (Hirabayashi J, Kasai K, Trends Glycosci Glycotechnol 2000;12:1-5). This method enables us to identify possible glycoprotein genes as well as glycosylation sites in a systematic manner by combining conventional lectin affinity chromatography and concurrent in silico database searching (Hirabayashi J, Kasai K, J Chromatogr B 2002; 771:67-87).

View Article and Find Full Text PDF

Galectins are widely distributed sugar-binding proteins whose basic specificity for beta-galactosides is conserved by evolutionarily preserved carbohydrate-recognition domains (CRDs). Although they have long been believed to be involved in diverse biological phenomena critical for multicellular organisms, in only few a cases has it been proved that their in vivo functions are actually based on specific recognition of the complex carbohydrates expressed on cell surfaces. To obtain clues to understand the physiological roles of diverse members of the galectin family, detailed analysis of their sugar-binding specificity is necessary from a comparative viewpoint.

View Article and Find Full Text PDF

Human galectin-9 is a beta-galactoside-binding protein consisting of two carbohydrate recognition domains (CRDs) and a linker peptide. We have shown that galectin-9 represents a novel class of eosinophil chemoattractants (ECAs) produced by activated T cells. A previous study demonstrated that the carbohydrate binding activity of galectin-9 is indispensable for eosinophil chemoattraction and that the N- and C-terminal CRDs exhibit comparable ECA activity, which is substantially lower than that of full-length galectin-9.

View Article and Find Full Text PDF