Publications by authors named "Tomomi Baba"

The development of healthy peri-implant soft tissues is critical to achieving the esthetic and biological success of implant restorations throughout all stages of healing and tissue maturation, starting with provisionalization. The purpose of this study was to investigate the effects of eight different implant provisional materials on human gingival fibroblasts at various stages of cell settlement by examining initial cell attachment, growth, and function. Eight different specimens-bis-acrylic 1 and 2, flowable and bulk-fill composites, self-curing acrylic 1 and 2, milled acrylic, and titanium (Ti) alloy as a control-were fabricated in rectangular plates ( = 3).

View Article and Find Full Text PDF

Larvae of temnopleurid sea urchins form a cell mass (CM) instead of an amniotic cavity on the left side at the early developmental stage for formation of the adult rudiment. However, the cell lineage and the mechanisms that form the CM are still unknown. We analyzed the potential to form a CM in partial embryos resulting from microsurgeries, using two temnopleurid species, Mespilia globulus (L.

View Article and Find Full Text PDF

There are two types of bisphosphonates (BPs), nitrogen-containing (N-BPs) and those free from nitrogen (non-N-BPs). Although N-BPs show greater inhibition of bone resorption than non-N-BPs, their effects are likely accompanied with inflammation, which non-N-BPs mitigate. We examined the competitive effects of zoledronate (ZOL), an N-BP, and etidronate (ETI), a non-N-BP, in osteoblasts.

View Article and Find Full Text PDF

Background And Objective: Tissue non-specific alkaline phosphatase (TNSALP) contains two types-bone- and liver-type-which are produced from the same gene due to differences in splicing. These two differ in their promoter, but the amino acid sequences of the mature proteins are identical. In this study, we examined the relationship between the two types of TNSALP expression and osteoblast differentiation.

View Article and Find Full Text PDF

Severe periodontitis is known to aggravate diabetes mellitus, though molecular events related to that link have not been fully elucidated. , a major pathogen of periodontitis, expresses dipeptidyl peptidase 4 (DPP4), which is involved in regulation of blood glucose levels by cleaving incretins in humans. We examined the enzymatic characteristics of DPP4 from as well as two other periodontopathic bacteria, and , and determined whether it is capable of regulating blood glucose levels.

View Article and Find Full Text PDF

Runx2 is an essential transcription factor for osteoblast and odontoblast differentiation and the terminal differentiation of chondrocytes. We have previously shown that the terminal differentiation of odontoblasts is inhibited in Runx2 transgenic {Tg(Col1a1-Runx2)} mice under the control of the 2.3-kb Col1a1 promoter, which directs the transgene expression to osteoblasts and odontoblasts.

View Article and Find Full Text PDF

Dipeptidyl peptidases (DPPs) that liberate dipeptides from the N-terminal end of oligopeptides are crucial for the growth of Porphyromonas species, anaerobic asaccharolytic gram negative rods that utilize amino acids as energy sources. Porphyromonas endodontalis is a causative agent of periapical lesions with acute symptoms and Asp/Glu-specific DPP11 has been solely characterized in this organism. In this study, we identified and characterized two P.

View Article and Find Full Text PDF

The glutamyl endopeptidase family of enzymes from staphylococci has been shown to be important virulence determinants of pathogenic family members, such as Staphylococcus aureus. Previous studies have identified the N-terminus and residues from positions 185-195 as potentially important regions that determine the activity of three members of the family. Cloning and sequencing of the new family members from Staphylococcus caprae (GluScpr) and Staphylococcus cohnii (GluScoh) revealed that the N-terminal Val residue is maintained in all family members.

View Article and Find Full Text PDF

A single nucleotide polymorphism (SNP) that causes a missense mutation of highly conserved Gln488 to His of the alpha isoform of the 90-kDa heat shock protein (Hsp90alpha) molecular chaperone is observed in Caucasians. The mutated Hsp90alpha severely reduced the growth of yeast cells. To investigate this molecular mechanism, we examined the domain-domain interactions of human Hsp90alpha by using bacterial 2-hybrid system.

View Article and Find Full Text PDF

Statins, which are known as cholesterol-lowering drugs, have several additional effects including the enhancement of bone formation and the stimulation of smooth muscle cell proliferation. In this study, we investigated the signal pathway of simvastatin operating in C2C12 myoblast cells. Myotube formation of C2C12 cells was efficiently blocked by 1 muM simvastatin, and mevalonic acid was able to cancel this effect.

View Article and Find Full Text PDF

Purpose: The use of osseointegrated implants for maxillofacial prostheses reduces the need for adhesives, provides for a more stable and more esthetic prosthesis with thinner margins, and results in increased patient acceptance and confidence. The purpose of this study was to compare the retention and load transfer characteristics of differently designed implant-retained auricular prostheses.

Materials And Methods: A photoelastic model was fabricated of the auricular-temporal region of a human skull.

View Article and Find Full Text PDF

The 47-kDa heat shock protein (HSP47) is a molecular chaperone specifically targeting the processing and quality control of collagen molecules. This study was performed to investigate whether antisense therapy preventing HSP47 expression might affect the scar formation occurring during wound healing of skin. In wound healing of neonatal rat skin, the number of HSP47-positive cells and the amount of HSP47 protein consistently increased up to 7 days after surgical wounding.

View Article and Find Full Text PDF