Front Cell Dev Biol
December 2024
Most blood cells derive from hematopoietic stem cells (HSCs), originating from endothelial cells. The induction of HSCs from endothelial cells occurs during mid-gestation, and research has revealed multiple steps in this induction process. Hemogenic endothelial cells emerge within the endothelium, transition to hematopoietic cells (pre-HSCs), and subsequently mature into functional HSCs.
View Article and Find Full Text PDFHematopoietic stem cells (HSCs) develop from hemogenic endothelial cells (HECs) during mouse embryogenesis. Understanding the signaling molecules required for HSC development is crucial for the in vitro derivation of HSCs. We previously induced HSCs from embryonic HECs, isolated at embryonic day 10.
View Article and Find Full Text PDFHematopoietic stem cells (HSCs) develop from hemogenic endothelial cells (HECs) in vivo during mouse embryogenesis. When cultured in vitro, cells from the embryo phenotypically defined as pre-HSC-I and pre-HSC-II have the potential to differentiate into HSCs. However, minimal factors required for HSC induction from HECs have not yet been determined.
View Article and Find Full Text PDFExp Hematol
August 2024
The genetic lesions that drive acute megakaryoblastic leukemia (AMKL) have not been fully elucidated. To search for genetic alterations in AMKL, we performed targeted deep sequencing in 34 AMKL patient samples and 8 AMKL cell lines and detected frequent genetic mutations in the NOTCH pathway in addition to previously reported alterations in GATA-1 and the JAK-STAT pathway. Pharmacological and genetic NOTCH activation, but not inhibition, significantly suppressed AMKL cell proliferation in both in vitro and in vivo assays employing a patient-derived xenograft model.
View Article and Find Full Text PDFHematopoietic stem cells (HSCs) give rise to nearly all blood cell types and play a central role in blood cell production in adulthood. For many years it was assumed that these roles were similarly responsible for driving the formation of the hematopoietic system during the embryonic period. However, detailed analysis of embryonic hematopoiesis has revealed the presence of hematopoietic cells that develop independently of HSCs both before and after HSC generation.
View Article and Find Full Text PDFCancer is a very rare event at the cellular level, although it is a common disease at the body level as one third of humans die of cancer. A small subset of cells in the body harbor the cellular features that constitute a permissive window for a particular genetic change to induce cancer. The significance of a permissive window is ironically best shown by a large number of failures in generating the animal model for acute myeloid leukemia (AML) with t(8;21).
View Article and Find Full Text PDFA cis-regulatory genetic element which targets gene expression to stem cells, termed stem cell enhancer, serves as a molecular handle for stem cell-specific genetic engineering. Here we show the generation and characterization of a tamoxifen-inducible CreER transgenic (Tg) mouse employing previously identified hematopoietic stem cell (HSC) enhancer for Runx1, eR1 (+24 m). Kinetic analysis of labeled cells after tamoxifen injection and transplantation assays revealed that eR1-driven CreER activity marks dormant adult HSCs which slowly but steadily contribute to unperturbed hematopoiesis.
View Article and Find Full Text PDFSelf-renewal and differentiation are tightly controlled to maintain haematopoietic stem cell (HSC) homeostasis in the adult bone marrow. During fetal development, expansion of HSCs (self-renewal) and production of differentiated haematopoietic cells (differentiation) are both required to sustain the haematopoietic system for body growth. However, it remains unclear how these two seemingly opposing tasks are accomplished within the short embryonic period.
View Article and Find Full Text PDFRecent genetic lineage tracing studies reveal heterogeneous origins of vascular endothelial cells and pericytes in the developing brain vasculature, despite classical experimental evidence for a mesodermal origin. Here we provide evidence through a genetic lineage tracing experiment that cephalic paraxial mesodermal cells give rise to endothelial cells and pericytes in the developing mouse brain. We show that Hepatic leukemia factor (Hlf) is transiently expressed by cephalic paraxial mesenchyme at embryonic day (E) 8.
View Article and Find Full Text PDFIn order to increase the contribution of donor HSC cells, irradiation and DNA alkylating agents have been commonly used as experimental methods to eliminate HSCs for adult mice. But a technique of HSC deletion for mouse embryo for increase contribution of donor cells has not been published. Here, we established for the first time a procedure for placental HSC transplantation into E11.
View Article and Find Full Text PDFBefore the emergence of hematopoietic stem cells (HSCs), lineage-restricted progenitors, such as erythro-myeloid progenitors (EMPs), are detected in the embryo or in pluripotent stem cell cultures in vitro. Although both HSCs and EMPs are derived from hemogenic endothelium, it remains unclear how and when these two developmental programs are segregated during ontogeny. Here, we show that hepatic leukemia factor (Hlf) expression specifically marks a developmental continuum between HSC precursors and HSCs.
View Article and Find Full Text PDFBackground: The Runt-related transcription factors (Runx) are a family of evolutionarily conserved transcriptional regulators that play multiple roles in the developmental control of various cell types. Among the three mammalian Runx proteins, Runx1 is essential for definitive hematopoiesis and its dysfunction leads to human leukemogenesis. There are two promoters, distal (P1) and proximal (P2), in the Runx1 gene, which produce two Runx1 isoforms with distinct N-terminal amino acid sequences, P1-Runx1 and P2-Runx1.
View Article and Find Full Text PDFThe Runx family genes play important roles in development and cancer, largely via their regulation of tissue stem cell behavior. Their involvement in two organs, blood and skin, is well documented. This review summarizes currently known Runx functions in the stem cells of these tissues.
View Article and Find Full Text PDFDuring mouse ontogeny, hematopoietic cells arise from specialized endothelial cells, i.e., the hemogenic endothelium, and form clusters in the lumen of arterial vessels.
View Article and Find Full Text PDFThere has been considerable interest in identifying a cis-regulatory element that targets gene expression to stem cells. Such an element, termed stem cell enhancer, holds the promise of providing important insights into the transcriptional programs responsible for inherent stem cell-specific properties such as self-renewal capacity. The element also serves as a molecular handle for stem cell-specific marking, transgenesis and gene targeting, thereby becoming invaluable to stem cell research.
View Article and Find Full Text PDF