Publications by authors named "Tomoko Sayano"

Introduction: Fuchs endothelial corneal dystrophy (FECD) is the leading cause of corneal blindness in developed countries. Corneal endothelial cells in FECD are susceptive to oxidative stress, leading to mitochondrial dysfunction and cell death. Oxidative stress causes many forms of cell death including parthanatos, which is characterized by translocation of apoptosis-inducing factor (AIF) to the nucleus with upregulation of poly (ADP-ribose) polymerase 1 (PARP-1) and poly (ADP-ribose) (PAR).

View Article and Find Full Text PDF

Pluripotent stem cell (PSC)-based cell therapies have increased steadily over the past few years, and assessing the risk of tumor formation is a high priority for clinical studies. Current in vivo tumorigenesis studies require several months and depend strongly on the site of grafting. In this study, we report that the anterior eye chamber is preferable to the subcutaneous space for in vivo tumorigenesis studies for several reasons.

View Article and Find Full Text PDF

Objective: In order to provide regenerative therapy for millions of patients suffering from corneal blindness globally, we derived corneal endothelial cell substitute (CECSi) cells from induced pluripotent stem cells (iPSCs) to treat corneal edema due to endothelial dysfunction (bullous keratopathy).

Methods And Results: We developed an efficient xeno-free protocol to produce CECSi cells from both research grade (Ff-MH09s01 and Ff-I01s04) and clinical grade (QHJI01s04) iPSCs. CECSi cells formed a hexagonal confluent monolayer with Na, K-ATPase alpha 1 subunit expression (ATP1A1), tight junctions, N-cadherin adherence junction formation, and nuclear PITX2 expression, which are all characteristics of corneal endothelial cells.

View Article and Find Full Text PDF

β-Glucocerebrosidase (GBA) hydrolyzes glucosylceramide (GlcCer) to generate ceramide. Previously, we demonstrated that lysosomal GBA1 and nonlysosomal GBA2 possess not only GlcCer hydrolase activity, but also transglucosylation activity to transfer the glucose residue from GlcCer to cholesterol to form β-cholesterylglucoside (β-GlcChol) β-GlcChol is a member of sterylglycosides present in diverse species. How GBA1 and GBA2 mediate β-GlcChol metabolism in the brain is unknown.

View Article and Find Full Text PDF

l-Serine (l-Ser) is a necessary precursor for the synthesis of proteins, lipids, glycine, cysteine, d-serine, and tetrahydrofolate metabolites. Low l-Ser availability activates stress responses and cell death; however, the underlying molecular mechanisms remain unclear. l-Ser is synthesized from 3-phosphoglycerate with 3-phosphoglycerate dehydrogenase (Phgdh) catalyzing the first reaction step.

View Article and Find Full Text PDF

To date, sterylglucosides have been reported to be present in various fungi, plants, and animals. In bacteria, such as Helicobacter pylori, proton NMR spectral analysis of isolated 1-O-cholesteryl-β-d-glucopyranoside (GlcChol) demonstrated the presence of an α-glucosidic linkage. By contrast, in animals, no detailed structural analysis of GlcChol has been reported, in part because animal-derived samples contain a high abundance of glucosylceramides (GlcCers)/galactosylceramides, which exhibit highly similar chromatographic behavior to GlcChol.

View Article and Find Full Text PDF

Unlabelled: Reduced availability of l-serine limits cell proliferation and leads to an adaptation to l-serine-deficient environment, the underlying molecular mechanism of which remain largely unexplored. Genetic ablation of 3-phosphoglycerate dehydrogenase (Phgdh), which catalyzes the first step of de novo l-serine synthesis, led to diminished cell proliferation and the activation of p38 MAPK and stress-activated protein kinase/Jun amino-terminal kinase in mouse embryonic fibroblasts under l-serine depletion. The resultant l-serine deficiency induced cyclin-dependent kinase inhibitor 1a (Cdkn1a; p21) expression, which was mediated by p38 MAPK.

View Article and Find Full Text PDF
Article Synopsis
  • * The researchers aimed to understand the molecular reasons behind these growth issues by analyzing gene expression in mouse cells lacking the enzyme 3-phosphoglycerate dehydrogenase (Phgdh), which is crucial for l-Ser production.
  • * Findings from their study are accessible to the public through the Gene Expression Omnibus repository, allowing other researchers to explore the data further (accession number GEO: GSE55687).
View Article and Find Full Text PDF

L-serine is required to synthesize membrane lipids such as phosphatidylserine and sphingolipids. Nevertheless, it remains largely unknown how a diminished capacity to synthesize L-serine affects lipid homeostasis in cells and tissues. Here, we show that deprivation of external L-serine leads to the generation of 1-deoxysphingolipids (doxSLs), including 1-deoxysphinganine, in mouse embryonic fibroblasts (KO-MEFs) lacking D-3-phosphoglycerate dehydrogenase (Phgdh), which catalyzes the first step in the de novo synthesis of L-serine.

View Article and Find Full Text PDF

Targeted disruption in mice of the gene encoding D-3-phosphoglycerate dehydrogenase (Phgdh) results in embryonic lethality associated with a striking reduction in free L-serine and growth retardation including severe brain malformation. We previously observed a severe impairment in neurogenesis of the central nervous system of Phgdh knockout (KO) embryos and a reduction in the protein content of their brains. Although these findings suggest that L-serine deficiency links attenuation of mRNA translation to severe developmental malformation of the central nervous system, the underlying key molecular event remains unexplored.

View Article and Find Full Text PDF

In mammalian brain, D-serine is synthesized from L-serine by serine racemase, and it functions as an obligatory co-agonist at the glycine modulatory site of N-methyl-D-aspartate (NMDA)-selective glutamate receptors. Although diminution in D-serine level has been implicated in NMDA receptor hypofunction, which is thought to occur in schizophrenia, the source of the precursor L-serine and its role in D-serine metabolism in adult brain have yet to be determined. We investigated whether L-serine synthesized in brain via the phosphorylated pathway is essential for D-serine synthesis by generating mice with a conditional deletion of D-3-phosphoglycerate dehydrogenase (Phgdh; EC 1.

View Article and Find Full Text PDF

LETM1 is located in the chromosomal region that is deleted in patients suffering Wolf-Hirschhorn syndrome; it encodes a homolog of the yeast protein Mdm38 that is involved in mitochondrial morphology. Here, we describe the LETM1-mediated regulation of the mitochondrial volume and its interaction with the mitochondrial AAA-ATPase BCS1L that is responsible for three different human disorders. LETM1 is a mitochondrial inner-membrane protein with a large domain extruding to the matrix.

View Article and Find Full Text PDF

Mitochondrial morphology dynamically changes in a balance of membrane fusion and fission in response to the environment, cell cycle, and apoptotic stimuli. Here, we report that a novel mitochondrial protein, MICS1, is involved in mitochondrial morphology in specific cristae structures and the apoptotic release of cytochrome c from the mitochondria. MICS1 is an inner membrane protein with a cleavable presequence and multiple transmembrane segments and belongs to the Bi-1 super family.

View Article and Find Full Text PDF

D-3-Phosphoglycerate dehydrogenase (Phgdh) is a necessary enzyme for de novo L-serine biosynthesis. Mutations in the human PHGDH cause serine deficiency disorders characterized by severe neurological symptoms including congenital microcephaly and psychomotor retardation. We showed previously that targeted disruption of Phgdh in mice causes overall growth retardation with severe brain microcephaly and leads to embryonic lethality.

View Article and Find Full Text PDF

Mitochondria are dynamic organelles that frequently divide and fuse together, resulting in the formation of intracellular tubular networks. In yeast and mammals, several factors including Drp1/Dnm1 and Mfn/Fzo1 are known to regulate mitochondrial morphology by controlling membrane fission or fusion. Here, we report the systematic screening of Caenorhabditis elegans mitochondrial proteins required to maintain the morphology of the organelle using an RNA interference feeding library.

View Article and Find Full Text PDF