Publications by authors named "Tomoko Narisawa"

Lysin motif (LysM) receptor-like kinase CERK1 is a co-receptor essential for plant immune responses against carbohydrate microbe-associated molecular patterns (MAMPs). Concerning the immediate downstream signaling components of CERK1, receptor-like cytoplasmic kinases such as PBL27 and other RLCK VII members have been reported to regulate immune responses positively. In this study, we report that a novel CERK1-interacting E3 ubiquitin ligase, PUB4, is also involved in the regulation of MAMP-triggered immune responses.

View Article and Find Full Text PDF

Despite recent intensive research efforts in functional genomics, the functions of only a limited number of Arabidopsis (Arabidopsis thaliana) genes have been determined experimentally, and improving gene annotation remains a major challenge in plant science. As metabolite profiling can characterize the metabolomic phenotype of a genetic perturbation in the plant metabolism, it provides clues to the function(s) of genes of interest. We chose 50 Arabidopsis mutants, including a set of characterized and uncharacterized mutants, that resemble wild-type plants.

View Article and Find Full Text PDF

Recognition of microbe-associated molecular patterns (MAMPs) initiates pattern-triggered immunity in host plants. Pattern recognition receptors (PRRs) and receptor-like cytoplasmic kinases (RLCKs) are the major components required for sensing and transduction of these molecular patterns. However, the regulation of RLCKs by PRRs and their specificity remain obscure.

View Article and Find Full Text PDF

Phosphorus supply is a major factor responsible for reduced crop yields. As a result, plants utilize various adaptive mechanisms against phosphorus depletion, including lipid remodelling. Here we report the involvement of a novel plant lipid, glucuronosyldiacylglycerol, against phosphorus depletion.

View Article and Find Full Text PDF

Glucosinolates (GSLs) are secondary metabolites in Brassicaceae plants synthesized from amino acids. Methionine-derived GSLs (Met-GSLs) with diverse side chains of various lengths are the major GSLs in Arabidopsis. Methionine chain elongation enzymes are responsible for variations in chain length in Met-GSL biosynthesis.

View Article and Find Full Text PDF

Plants synthesize a sulfur-containing lipid, sulfoquinovosyldiacylglycerol, which is one of three nonphosphorus glycerolipids that provide the bulk of the structural lipids in photosynthetic membranes. Here, the identification of a novel gene, UDP-glucose pyrophosphorylase3 (UGP3), required for sulfolipid biosynthesis is described. Transcriptome coexpression analysis demonstrated highly correlated expression of UGP3 with known genes for sulfolipid biosynthesis in Arabidopsis thaliana.

View Article and Find Full Text PDF

We previously demonstrated that a beta-1,3-, 1,6-oligoglucan (AaGlucan) from the fungus Alternaria alternata 102 shows strong elicitor activity in tobacco BY-2 cells. We have used cDNA microarray analysis to monitor global changes in gene expression in tobacco cells treated with this A. alternata fraction or with laminarin.

View Article and Find Full Text PDF

Target metabolic and large-scale transcriptomic analyses of tobacco (Nicotiana tabacum L.) Bright Yellow-2 (BY-2) cells were employed to identify novel gene(s) involved in methyl jasmonate (MJ)-dependent function in plants. At the metabolic level, we describe the specific accumulation of several phenylpropanoid-polyamine conjugates in MJ-treated BY-2 cells.

View Article and Find Full Text PDF