Publications by authors named "Tomoko Koito"

The environment around deep sea hydrothermal vents is characterized by an abundance of sulfur compounds, including toxic hydrogen sulfide. However, numerous communities of various invertebrates are found in it. It is suggested that invertebrates in the vicinity of hydrothermal vents detoxify sulfur compounds by biosynthesis of taurine-related compounds in the body.

View Article and Find Full Text PDF

AbstractVesicomyid clams, which inhabit deep-sea hydrothermal vents and hydrocarbon seeps, are nutritionally dependent on symbiotic, chemoautotrophic bacteria that produce organic matter by using hydrogen sulfide. Vesicomyid clams absorb hydrogen sulfide from the foot and transport it in their hemolymph to symbionts in the gill. However, mechanisms to cope with hydrogen sulfide toxicity are not fully understood.

View Article and Find Full Text PDF

Oncorhynchus masou, including subspecies of Oncorhynchus masou masou (yamame) and Oncorhynchus masou ishikawae (amago), is one of the salmonid groups impacted by human activity such as dam construction and release of non-native salmonids. In this study, we investigated the genetic structure of O. masou populations in the Sakawa and Sagami Rivers, Japan, by sequencing the mitochondrial control region.

View Article and Find Full Text PDF

Tetrodotoxin (TTX), a potent neurotoxin, is found in various phylogenetically diverse taxa. In marine environments, the pufferfish is at the top of the food chain among TTX-bearing organisms. The accumulation of TTX in the body of pufferfish appears to be of the food web that begins with bacteria.

View Article and Find Full Text PDF

Mammalian γ-aminobutyric acid (GABA) transporter subtype 1 (GAT-1) is a specific transporter for GABA, an inhibitory neurotransmitter in GABA-ergic neurons. GAT-1 belongs to the GAT group, in which five related transporters, GAT-2, GAT-3, GAT-4, CT1, and TAUT are known in mammals. By contrast, the deep-sea mussel, Bathymodiolus septemdierum has only two GAT group members, BsGAT-1 and BsTAUT, and their function in environmental adaptation is of interest to better understand the physiology of deep-sea organisms.

View Article and Find Full Text PDF

Hydrothermal vent environmental conditions are characterized by high sulfide concentrations, fluctuating osmolality, and irregular temperature elevations caused by vent effluents. These parameters represent potential stressors for organisms that inhabit the area around hydrothermal vents. Here, we aimed to obtain a better understanding of the adaptation mechanisms of marine species to hydrothermal vent environments.

View Article and Find Full Text PDF

It has been suggested that invertebrates inhabiting deep-sea hydrothermal vent areas use the sulfinic acid hypotaurine, a precursor of taurine, to protect against the toxicity of hydrogen sulfide contained in the seawater from the vent. In this protective system, hypotaurine is accumulated in the gill, the primary site of sulfide exposure. However, the pathway for hypotaurine synthesis in mollusks has not been identified.

View Article and Find Full Text PDF

The GABA transporter (GAT) group is one of the major subgroups in the solute career 6 (SLC6) family of transmembrane proteins. The GAT group, which has been well studied in mammals, has 6 known members, i.e.

View Article and Find Full Text PDF

Various invertebrates inhabiting hydrothermal vents possess sulfur-oxidizing bacteria in their tissues; however, the mechanisms by which toxic sulfides are delivered to these endosymbionts remain unknown. Recently, detoxification of sulfides using thiotaurine, a sulfur-containing amino acid, has been suggested. In this study, we propose the involvement of a taurine transporter in sulfide detoxification in the deep-sea mussel Bathymodiolus septemdierum by demonstrating: (i) the abundance of its mRNA in the gill; (ii) its activity under a wide range of salinities; (iii) its low Michaelis constant value in taurine transportation; and (iv) its affinity for thiotaurine and the thiotaurine precursor, hypotaurine.

View Article and Find Full Text PDF