Publications by authors named "Tomoko Kadowaki"

Background: Rheumatoid arthritis (RA) is an autoimmune disease characterized by immune cell-mediated joint inflammation and subsequent osteoclast-dependent bone destruction. Collagen antibody-induced arthritis (CAIA) is a useful mouse model for examining the inflammatory mechanisms in human RA. Previously, we identified the novel gene Rab44, which is a member of the large Rab GTPase family and is highly expressed in immune-related cells and osteoclasts.

View Article and Find Full Text PDF

The pancreas is a glandular organ with both endocrine and exocrine functions. Researchers have investigated the roles of several Rab proteins, which are major regulators of membrane trafficking, in pancreatic exocytosis of zymogen granules in exocrine cells, also known as acinar cells. However, detailed molecular mechanisms mediated by Rab proteins are not fully understood.

View Article and Find Full Text PDF

Skeletal muscle is composed of multinucleated myotubes formed by the fusion of mononucleated myoblasts. Skeletal muscle differentiation, termed as myogenesis, have been investigated using the mouse skeletal myoblast cell line C2C12. It has been reported that several "small" Rab proteins, major membrane-trafficking regulators, possibly regulate membrane protein transport in C2C12 cells; however, the role of Rab proteins in myogenesis remains unexplored.

View Article and Find Full Text PDF

The skeletal muscle is a tissue that shows remarkable plasticity to adapt to various stimuli. The development and regeneration of skeletal muscles are regulated by numerous molecules. Among these, we focused on Rab44, a large Rab GTPase, that has been recently identified in immune cells and osteoclasts.

View Article and Find Full Text PDF

Bacteria of the family (flavobacteria) primarily comprise nonpathogenic bacteria that inhabit soil and water (both marine and freshwater). However, some bacterial species in the family, including and , are known to be pathogenic to fish. Flavobacteria, including the abovementioned pathogenic bacteria, belong to the phylum and possess two phylum-specific features, gliding motility and a protein secretion system, which are energized by a common motor complex.

View Article and Find Full Text PDF

Rab44 was recently identified as an atypical Rab GTPase that possesses EF-hand and coiled-coil domains at the N-terminus, and a Rab-GTPase domain at the C-terminus. Rab44 is highly expressed in immune-related cells such as mast cells, macrophages, osteoclasts, and granulocyte-lineage cells in the bone marrow. Therefore, it is speculated that Rab44 is involved in the inflammation and differentiation of immune cells.

View Article and Find Full Text PDF

Rab11a, which ubiquitously localizes to early and recycling endosomes, is required for regulating the vesicular transport of cellular cargos. Interestingly, our previous study revealed that Rab11a served as a negative regulator of osteoclastogenesis by facilitating the lysosomal proteolysis of (1) colony-stimulating factor-1 (c-fms) receptor and (2) receptor activator of nuclear factor-κB (RANK) receptor, thereby resulting in inhibition of osteoclast (OC) differentiation, maturation, and bone-resorbing activity. However, the molecular mechanisms of how Rab11a negatively affected osteoclastogenesis were largely unknown.

View Article and Find Full Text PDF

Osteoclasts are multinucleated bone-resorbing cells that are formed by the fusion of macrophages. Recently, we identified , a large Rab GTPase, as an upregulated gene during osteoclast differentiation that negatively regulates osteoclast differentiation. However, the molecular mechanisms by which Rab44 negatively regulates osteoclast differentiation remain unknown.

View Article and Find Full Text PDF

Accumulating evidence suggests that Rab GTPases representing the largest branch of Ras superfamily have recently emerged as the core factors for the regulation of osteoclastogenesis through modulating vesicular transport amongst specific subcellular compartments. Among these, Rab34 GTPase has been identified to be important for the post-Golgi secretory pathway and for phagocytosis; nevertheless, its specific role in osteoclastogenesis has been completely obscure. Here, upon the in vitro model of osteoclast formation derived from murine macrophages like RAW-D cells or bone marrow-derived macrophages, we reveal that Rab34 regulates osteoclastogenesis bidirectionally.

View Article and Find Full Text PDF

Despite a clear correlation between the infiltration of periodontal pathogens in the brain and cognitive decline in Alzheimer's disease (AD), the precise mechanism underlying bacteria crossing the blood-brain barrier (BBB) remains unclear. The periodontal pathogen Porphyromonas gingivalis produces a unique class of cysteine proteases termed gingipains. Gingipains appear to be key virulence factors that exacerbate sporadic AD.

View Article and Find Full Text PDF

Background: Studies have reported that synaptic failure occurs before the Alzheimer's disease (AD) onset. The systemic Porphyromonas gingivalis (P. gingivalis) infection is involved in memory decline.

View Article and Find Full Text PDF

Rab GTPases are major coordinators of intracellular membrane trafficking, including vesicle transport, membrane fission, tethering, docking, and fusion events. Rab GTPases are roughly divided into two groups: conventional "small" Rab GTPases and atypical "large" Rab GTPases that have been recently reported. Some members of large Rab GTPases in mammals include Rab44, Rab45/RASEF, and Rab46.

View Article and Find Full Text PDF

Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone that plays a pivotal role in folding, activating and assembling a variety of client proteins. In addition, HSP90 has recently emerged as a crucial regulator of vesicular transport of cellular proteins. In our previous study, we revealed Rab11b negatively regulated osteoclastogenesis by promoting the lysosomal proteolysis of c-fms and RANK surface receptors via the axis of early endosome-late endosome-lysosomes.

View Article and Find Full Text PDF

Rab44 is a large Rab GTPase containing a Rab GTPase domain and some additional N-terminal domains. We recently used Rab44-deficient mice to demonstrate that Rab44 regulates granule exocytosis in mast cells and IgE-mediated anaphylaxis. In mouse mast cells, Rab44 is expressed as two isoforms, namely, the long and short forms; however, the characteristics of these two isoforms remain unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Rab11b is crucial for vesicle trafficking in cells and has been identified as an inhibitor of osteoclast differentiation, impacting bone resorption processes.
  • The study used murine macrophage-derived osteoclasts to demonstrate that Rab11b regulates osteoclastogenesis by reducing the surface levels of key receptors (RANK and c-Fms) and disrupting their signaling pathways.
  • Additionally, Rab11b helps direct these receptors for degradation in lysosomes, facilitating a balance in bone resorption and highlighting its potential role as a therapeutic target in bone-related diseases.
View Article and Find Full Text PDF

Rab44 is a large Rab GTPase that contains an amino-terminal EF-hand domain, a coiled-coil domain, and a carboxyl-terminal Rab GTPase domain. However, the roles of the EF-hand and coiled-coil domains remain unclear. Here, we constructed various deletion and point mutants of human Rab44.

View Article and Find Full Text PDF

Osteoclast differentiation and activity are controlled by two essential cytokines, macrophage colony-stimulating factor (M-CSF) and the receptor activator of nuclear factor-κB ligand (RANKL). Rab11A GTPase, belonging to Rab11 subfamily representing the largest branch of Ras superfamily of small GTPases, has been identified as one of the crucial regulators of cell surface receptor recycling. Nevertheless, the regulatory role of Rab11A in osteoclast differentiation has been completely unknown.

View Article and Find Full Text PDF

Porphyromonas gingivalis is a gram-negative, rod-shaped, nonmotile bacterium belonging to the phylum Bacteroidetes. It produces abundant amounts of proteases in both cell-associated and secretory forms, including a group of cysteine proteases referred to as gingipains, which have attracted much attention due to their high proteolytic activity associated with pathogenicity. Gingipains are grouped into arginine (R)-specific (RgpA and RgpB) and lysine (K)-specific (Kgp) types.

View Article and Find Full Text PDF

Rab44 is a large Rab GTPase that contains a Rab-GTPase domain and some additional domains, such as EF-hand and coiled-coil domains at the N-terminus. Our previous study showed that Rab44 negatively regulates osteoclast differentiation by modulating intracellular calcium levels; however, aside from those findings, there is little information concerning Rab44 on other cells or tissues. In this study, we showed that Rab44 was highly expressed in bone marrow cells among various mouse tissues.

View Article and Find Full Text PDF

Cerebrovascular-related amyloidogenesis is found in over 80% of Alzheimer's disease (AD) cases, and amyloid β (Aβ) generation is increased in the peripheral macrophages during infection of Porphyromonas gingivalis (P. gingivalis), a causal bacterium for periodontitis. In this study, we focused on receptor for advanced glycation end products (RAGE), the key molecule involves in Aβ influx after P.

View Article and Find Full Text PDF

Abnormal accumulation of amyloid-β (Aβ) in the brain is the most significant pathological hallmark of Alzheimer's disease (AD). We have found that chronic systemic exposure to lipopolysaccharide of Porphyromonas gingivalis (P. gingivalis) induces the accumulation of Aβ in the brain of middle-aged mice.

View Article and Find Full Text PDF

Kelch repeat and BTB domain-containing protein 11 (KBTBD11) is a member of the KBTBD subfamily of proteins that possess a BTB domain and Kelch repeats. Despite the presence of the Kbtbd11 gene in mammalian genomes, there are few reports about KBTBD11 at present. In this study, we identified the novel protein KBTBD11 as a negative regulator of osteoclast differentiation.

View Article and Find Full Text PDF