We investigated the effects of geranium essential oil (GEO) on anaphylaxis. GEO can exert antioxidant and anti-inflammatory effects, but its roles in allergic reactions are incompletely understood. Here, we used mouse cells to show that GEO inhibited the degranulation of cultured mast cells (CMCs).
View Article and Find Full Text PDFThe aim of the present study was to investigate the biological activity of 20 essential oils (EOs) derived from herbal plants and citrus fruits. The in vitro anti-allergic and anti-inflammatory activities of these oils were investigated, and the EO which was found to have the strongest activity of the 20 EOs examined, was investigated further to identify its components and bioactive compounds. The in vitro anti-allergic activity was determined by measuring the release of β-hexosaminidase from rat basophilic leukemia (RBL-2H3) cells treated with the calcium ionophore, A23187.
View Article and Find Full Text PDFIn this study, the biological activity of 20 essential oils (EOs) from herbal plants and citrus fruits were investigated in terms of mammalian DNA polymerase (pol) inhibitory activity, cancer cell (human colon carcinoma, HCT116) growth inhibitory activity, antiallergic activity, as anti-β-hexosaminidase release activity in rat basophilic leukemia RBL-2H3 cells treated with calcium ionophore A23187, and antioxidant activity by a lipophilic-oxygen radical absorbance capacity method. These EOs showed patterns of inhibition of pol α, a DNA replicative pol, similar to their cancer cell growth inhibitory activity, and their inhibitory activity on pol λ, a DNA repair/recombination pol, by the EOs showed correlation with anti-β-hexosaminidase release activity. Among these EOs, chamomile (Matricaria chamomilla L.
View Article and Find Full Text PDFWe investigated the effects of water-soluble low-molecular-weight β-(1,3-1,6) D-glucan isolated from Aureobasidium pullulans 1A1 strain black yeast (LMW-β-glucan) on mast cell-mediated anaphylactic reactions. Although it is known that LMW-β-glucan has anti-tumor, anti-metastatic and anti-stress effects, the roles of LMW-β-glucan in immediate-type allergic reactions have not been fully investigated. We examined whether LMW-β-glucan could inhibit mast cell degranulation and passive cutaneous anaphylaxis (PCA).
View Article and Find Full Text PDFBiosci Biotechnol Biochem
September 2009
This study investigated the effects of guarana seed extract (GSE) on an anti-allergic mechanism. GSE orally administered inhibited the anti-dinitrophenol IgE-induced passive cutaneous anaphylaxis reaction in mice. Furthermore, it inhibited the degranulation of rat basophilic leukemia RBL-2H3 cells.
View Article and Find Full Text PDFThe mi (microphthalmia) locus of mice encodes a transcription factor, MITF. B6-tg/tg mice that do not express any MITF have white coats and small eyes. Moreover, the number of mast cells decreased to one-third that of normal control (+/+) mice in the skin of B6-tg/tg mice.
View Article and Find Full Text PDFThe mutant tg/tg mice, which do not express mi transcription factor (MITF), lack mast cells in most tissues. Since MITF is expressed in both mast cells and tissues where mast cells develop, there is a possibility that the tg/tg mice may show abnormalities in both mast cell precursors and tissue environments. We examined this possibility by bone marrow and skin transplantation.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2004
Spermatogenic immunoglobulin superfamily (SgIGSF) is a recently identified adhesion molecule, and the microphthalmia transcription factor (MITF) was essential for its expression in mast cells. Since the tg mutant allele is practically a null mutation of the MITF gene, cultured mast cells (CMCs) derived from (WBxC57BL/6)F(1) (F(1))-tg/tg mice did not express SgIGSF whereas CMCs from F(1)-wild-type (+/+) mice expressed it abundantly. When cocultured with NIH/3T3 fibroblasts, F(1)-tg/tg CMCs showed poor adhesion to NIH/3T3 fibroblasts.
View Article and Find Full Text PDFMast cells were depleted in the peritoneal cavity of WBB6F1-tg/tg mice that did not express a transcription factor, MITF. When acute bacterial peritonitis was induced in WBB6F1-+/+, WBB6F1-W/Wv, and WBB6F1-tg/tg mice, the proportion of surviving WBB6F1-+/+ mice was significantly higher than that of surviving WBB6F1-W/Wv or WBB6F1-tg/tg mice. The poor survival of WBB6F1-W/Wv and WBB6F1-tg/tg mice was attributed to the deficient influx of neutrophils into the peritoneal cavity.
View Article and Find Full Text PDFMicrophthalmia transcription factor (MITF) is a basic-helix-loop-helix-leucine zipper-type transcription factor. The mutant mi and Mi(wh) alleles encode MITFs with deletion and alteration of a single amino acid, respectively, whereas the tg is a null mutation. In coculture with NIH/3T3 fibroblasts, the numbers of cultured mast cells (CMCs) derived from C57BL/6 (B6)(mi/mi), B6(Miwh/Miwh), and B6(tg/tg) mice that adhered to NIH/3T3 fibroblasts were one third as large as the number of B6(+/+) CMCs that adhered to NIH/3T3 fibroblasts.
View Article and Find Full Text PDFThe mi transcription factor (MITF) is a basic-helix-loop-helix leucine zipper transcription factor and is encoded by mi locus. The mi/mi mutant mice showed a significant decrease of skin mast cells in C57BL/6 (B6) genetic background but not in WB genetic background. Kit ligand (KitL) is the most important growth factor for development of mast cells, and the decrease of skin mast cells in B6-mi/mi mice was attributable to the reduced expression of c-kit receptor tyrosine kinase (KIT) that is a receptor for KitL.
View Article and Find Full Text PDFMITF is a basic helix-loop-helix leucine zipper-type transcription factor and is important for development of mast cells. MITF encoded by Mi(wh) allele (Mi(wh)-MITF) was mutated at a single amino acid of basic domain, and possessed a deficient but apparent DNA-binding ability. Here, we characterized the unique effects of Mi(wh)-MITF on the expression of mast cell-related genes.
View Article and Find Full Text PDFThe mi transcription factor (MITF) is a basic helix-loop-helix leucine zipper (bHLH-Zip) transcription factor and encoded by the mi locus of mice. Double gene dose of mutant allele at the mi locus results the decrease of mast cells and phenotypic abnormalities of mast cells. Various mutations have been reported at the mi locus.
View Article and Find Full Text PDFThe development of mast cells is controlled through the cooperative effects of growth factors and nuclear transcription factors. The signals generated by the binding of stem cell factor (SCF) to c-kit receptor tyrosine kinase (KIT) are essential for their development and survival. A double gene dose of mutant alleles at either the SCF or KIT locus results in a decrease of mast cells.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2002
MITF is a basic helix-loop-helix leucine zipper transcription factor, which is important for normal phenotypic expression of mast cells. Three isoforms of MITF have been known in mice, MITF-A, -H, and -M. Since cultured mast cells (CMCs) are useful for studying the function of MITF, we examined isoforms of MITF expressed in CMCs using 5'-RACE, and found a new isoform of MITF, MITF-E.
View Article and Find Full Text PDF