Publications by authors named "Tomoko Ishikawa-Fujiwara"

Rev1 has two important functions in the translesion synthesis pathway, including dCMP transferase activity, and acts as a scaffolding protein for other polymerases involved in translesion synthesis. However, the role of Rev1 in mutagenesis and tumorigenesis in vivo remains unclear. We previously generated Rev1-overexpressing (Rev1-Tg) mice and reported that they exhibited a significantly increased incidence of intestinal adenoma and thymic lymphoma (TL) after N-methyl-N-nitrosourea (MNU) treatment.

View Article and Find Full Text PDF

The accumulation of oxidative DNA lesions in neurons is associated with neurodegenerative disorders and diseases. Ogg1 (8-oxoG DNA glycosylase-1) is a primary repair enzyme to excise 7,8-dihydro-8-oxoguanine (8-oxoG), the most frequent mutagenic base lesion produced by oxidative DNA damage. We have developed ogg1-deficient medaka by screening with a high resolution melting (HRM) assay in Targeting-Induced Local Lesions In Genomes (TILLING) library.

View Article and Find Full Text PDF

Male and female animals typically display innate sex-specific mating behaviors, which, in vertebrates, are highly dependent on sex steroid signaling. While estradiol-17β (E2) signaling through estrogen receptor 2 (ESR2) serves to defeminize male mating behavior in rodents, the available evidence suggests that E2 signaling is not required in teleosts for either male or female mating behavior. Here, we report that female medaka deficient for Esr2b, a teleost ortholog of ESR2, are not receptive to males but rather court females, despite retaining normal ovarian function with an unaltered sex steroid milieu.

View Article and Find Full Text PDF
Article Synopsis
  • Translesion synthesis (TLS) polymerases, particularly Rev1, help bypass DNA damage during replication by incorporating nucleotides and assisting other TLS polymerases.
  • Researchers created specific mutants of Rev1 in medaka fish to study its functions, revealing that one mutant was highly sensitive to DNA damage from a chemical called DENA while another showed increased tumor rates despite similar mutation frequencies compared to normal fish.
  • The study found a significant increase in loss of heterozygosity (LOH) in the mutant with reduced dCMP activity, highlighting its role in tumor development, and marking the first link between Rev1's activity and LOH suppression.
View Article and Find Full Text PDF

(6-4) Photolyases ((6-4)PLs) are flavoenzymes that repair the carcinogenic UV-induced DNA damage, pyrimidine(6-4)pyrimidone photoproducts ((6-4)PPs), in a light-dependent manner. Although the reaction mechanism of DNA photorepair by (6-4)PLs has been intensively investigated, the molecular mechanism of the lesion recognition remains obscure. We show that a well-conserved arginine residue in Xenopus laevis (6-4)PL (Xl64) participates in DNA binding, through Coulomb and CH-π interactions.

View Article and Find Full Text PDF

When activated by the accumulation of unfolded proteins in the endoplasmic reticulum, metazoan IRE1, the most evolutionarily conserved unfolded protein response (UPR) transducer, initiates unconventional splicing of XBP1 mRNA. Unspliced and spliced mRNA are translated to produce pXBP1(U) and pXBP1(S), respectively. pXBP1(S) functions as a potent transcription factor, whereas pXBP1(U) targets pXBP1(S) to degradation.

View Article and Find Full Text PDF
Article Synopsis
  • The unfolded protein response (UPR) manages misfolded proteins in the endoplasmic reticulum (ER), but how vertebrates utilize ten different UPR transducers is not fully understood.
  • In medaka fish, early embryonic development shows physiological ER stress, where the UPR transducer ATF6 is crucial for aligning notochord cells and folding type VIII collagen.
  • Both ATF6 and BBF2H7 are needed for vacuolization processes in later stages, with BBF2H7 regulating genes that help expand COPII vesicles for transporting long-chain collagen, essential for forming the basement membrane in developing tissues.
View Article and Find Full Text PDF

Proteins of the cryptochrome/photolyase family (CPF) exhibit sequence and structural conservation, but their functions are divergent. Photolyase is a DNA repair enzyme that catalyzes the light-dependent repair of ultraviolet (UV)-induced photoproducts, whereas cryptochrome acts as a photoreceptor or circadian clock protein. Two types of DNA photolyase exist: CPD photolyase, which repairs cyclobutane pyrimidine dimers (CPDs), and 6-4 photolyase, which repairs 6-4 pyrimidine-pyrimidone photoproducts (6-4PPs).

View Article and Find Full Text PDF

Homozygous mutations in the glucocerebrosidase (GBA) gene result in Gaucher disease (GD), the most common lysosomal storage disease. Recent genetic studies have revealed that GBA mutations confer a strong risk for sporadic Parkinson's disease (PD). To investigate how GBA mutations cause PD, we generated GBA nonsense mutant (GBA-/-) medaka that are completely deficient in glucocerebrosidase (GCase) activity.

View Article and Find Full Text PDF

FSH, a glycoprotein hormone, is circulated from the pituitary and functions by binding to a specific FSH receptor (FSHR). FSHR is a G protein-coupled, seven-transmembrane receptor linked to the adenylyl cyclase or other pathways and is expressed in gonadal somatic cells. In some nonmammalian species, fshr expression is much higher in the ovary than in the testis during gonadal sex differentiation, suggesting that FSHR is involved in ovarian development in nonmammalian vertebrates.

View Article and Find Full Text PDF

The Cryptochrome/Photolyase Family (CPF) represents an ancient group of widely distributed UV-A/blue-light sensitive proteins sharing common structures and chromophores. During the course of evolution, different CPFs acquired distinct functions in DNA repair, light perception and circadian clock regulation. Previous phylogenetic analyses of the CPF have allowed reconstruction of the evolution and distribution of the different CPF super-classes in the tree of life.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined HPV infection and p53 mutations in 493 Japanese head and neck squamous cell carcinoma (HNSCC) patients, focusing specifically on oropharyngeal vs. non-oropharyngeal cancers.
  • Oropharyngeal carcinoma showed a higher HPV positivity rate (34.4%) compared to non-oropharyngeal (3.6%), with HPV16 being the most common type found.
  • The presence of HPV was negatively correlated with tobacco and alcohol use as well as p53 mutations; whereas in virus-unrelated HNSCC, p53 mutations were more common and connected to lifestyle factors like smoking.
View Article and Find Full Text PDF

Radiation increases mutation frequencies at tandem repeat loci. Germline mutations in γ-ray-irradiated medaka fish (Oryzias latipes) were studied, focusing on the microsatellite loci. Mismatch-repair genes suppress microsatellite mutation by directly removing altered sequences at the nucleotide level, whereas the p53 gene suppresses genetic alterations by eliminating damaged cells.

View Article and Find Full Text PDF

Life is controlled by multiple rhythms. Although the interaction of the daily (circadian) clock with environmental stimuli, such as light, is well documented, its relationship to endogenous clocks with other periods is little understood. We establish that the marine worm Platynereis dumerilii possesses endogenous circadian and circalunar (monthly) clocks and characterize their interactions.

View Article and Find Full Text PDF

ATF6α and ATF6β are membrane-bound transcription factors activated by regulated intramembrane proteolysis in response to endoplasmic reticulum (ER) stress to induce various ER quality control proteins. ATF6α- and ATF6β single-knockout mice develop normally, but ATF6α/β double knockout causes embryonic lethality, the reason for which is unknown. Here we show in medaka fish that ATF6α is primarily responsible for transcriptional induction of the major ER chaperone BiP and that ATF6α/β double knockout, but not ATF6α- or ATF6β single knockout, causes embryonic lethality, as in mice.

View Article and Find Full Text PDF