The motor thalamus relays signals from subcortical structures to the motor cortical areas. Previous studies in songbirds and rodents suggest that cortical feedback inputs crucially contribute to the generation of movement-related activity in the motor thalamus. In primates, however, it remains uncertain whether the corticothalamic projections may play a role in shaping neuronal activity in the motor thalamus.
View Article and Find Full Text PDFThe cerebellum is thought to have a variety of functions because it developed with the evolution of the cerebrum and connects with different areas in the frontoparietal cortices. Like neurons in the cerebral cortex, those in the cerebellum also exhibit strong activity during planning in addition to the execution of movements. However, their specific roles remain elusive.
View Article and Find Full Text PDFWhen measuring time, neuronal activity in the cortico-basal ganglia pathways has been shown to be temporally scaled according to the interval, suggesting that signal transmission within the pathways is flexibly controlled. Here we show that, in the caudate nuclei of monkeys performing a time production task with three different intervals, the magnitude of visually-evoked potentials at the beginning of an interval differed depending on the conditions. Prior to this response, the power of low frequency components (6-20 Hz) significantly changed, showing inverse correlation with the visual response gain.
View Article and Find Full Text PDFThe ability to flexibly adjust movement timing is important for everyday life. Although the basal ganglia and cerebellum have been implicated in monitoring of supra- and sub-second intervals, respectively, the underlying neuronal mechanism remains unclear. Here, we show that in monkeys trained to generate a self-initiated saccade at instructed timing following a visual cue, neurons in the caudate nucleus kept track of passage of time throughout the delay period, while those in the cerebellar dentate nucleus were recruited only during the last part of the delay period.
View Article and Find Full Text PDFWhen waiting for a traffic light or dancing to a musical beat, we unconsciously keep track of elapsed time and precisely predict the timing of forthcoming sensory events. Temporal monitoring and prediction are integral to our daily life, and are regulated by neuronal processes through multiple global networks involving the frontoparietal cortices, the basal ganglia and the cerebellum. These processes are also known to be influenced by a variety of internal state and neuromodulators.
View Article and Find Full Text PDFWe recently found that when monkeys performed an oculomotor version of the time production task, the trial-by-trial latency of self-timed saccades was negatively correlated with pupil diameter just before the delay period (Suzuki et al., 2016). Since pupil diameter has been shown to correlate with neuronal activity in the locus coeruleus, the level of noradrenaline (NA) in the brain might regulate the subjective passage of time.
View Article and Find Full Text PDFUnlabelled: Our daily experience of time is strongly influenced by internal states, such as arousal, attention, and mood. However, the underlying neuronal mechanism remains largely unknown. To investigate this, we recorded pupil diameter, which is closely linked to internal factors and neuromodulatory signaling, in monkeys performing the oculomotor version of the time production paradigm.
View Article and Find Full Text PDFUnlabelled: Although several lines of evidence establish the involvement of the medial and vestibular parts of the cerebellum in the adaptive control of eye movements, the role of the lateral hemisphere of the cerebellum in eye movements remains unclear. Ascending projections from the lateral cerebellum to the frontal and parietal association cortices via the thalamus are consistent with a role of these pathways in higher-order oculomotor control. In support of this, previous functional imaging studies and recent analyses in subjects with cerebellar lesions have indicated a role for the lateral cerebellum in volitional eye movements such as anti-saccades.
View Article and Find Full Text PDF