Background: Recently, the hypothesis that pathological α-Synuclein propagates from the gut to the brain has gained attention. Although results from animal studies support this hypothesis, the specific mechanism remains unclear. This study focused on the intestinal fatty acid-binding protein (FABP2), which is one of the subtypes of fatty acid binding proteins localizing in the gut, with the hypothesis that FABP2 is involved in the gut-to-brain propagation of α-synuclein.
View Article and Find Full Text PDFAn increase in the global aging population is leading to an increase in age-related conditions such as dementia and movement disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and dementia with Lewy bodies (DLB). The accurate prediction of risk factors associated with these disorders is crucial for early diagnosis and prevention. Biomarkers play a significant role in diagnosing and monitoring diseases.
View Article and Find Full Text PDFMultiple system atrophy (MSA) is a neurodegenerative disease characterized by the accumulation of misfolded α-synuclein (αSyn) and myelin disruption. However, the mechanism underlying αSyn accumulation in MSA brains remains unclear. Here, we aimed to identify epsin-2 as a potential regulator of αSyn propagation in MSA brains.
View Article and Find Full Text PDFα-synuclein accumulation into dopaminergic neurons is a pathological hallmark of Parkinson's disease. We previously demonstrated that fatty acid-binding protein 3 (FABP3) is critical for α-synuclein uptake and propagation to accumulate in dopaminergic neurons. FABP3 is abundant in dopaminergic neurons and interacts with dopamine D2 receptors, specifically the long type (D).
View Article and Find Full Text PDF