The discrepancy between model predictions and actual processes, known as process-model mismatch (PMM), remains a substantial challenge in bioprocess optimization. We previously introduced a hybrid in silico/in-cell controller (HISICC) that combines model-based optimization with cell-based feedback to address this problem. Here, we extended this approach to regulate a key enzyme level using intracellular biosensing.
View Article and Find Full Text PDFBioprocess optimization using mathematical models is prevalent, yet the discrepancy between model predictions and actual processes, known as process-model mismatch (PMM), remains a significant challenge. This study proposes a novel hybrid control system called the hybrid in silico/in-cell controller (HISICC) to address PMM by combining model-based optimization (in silico feedforward controller) with feedback controllers utilizing synthetic genetic circuits integrated into cells (in-cell feedback controller). We demonstrated the efficacy of HISICC using two engineered Escherichia coli strains, TA1415 and TA2445, previously developed for isopropanol (IPA) production.
View Article and Find Full Text PDF