The phosphatidylinositol 3-kinase signaling pathway in vascular endothelial cells is important for systemic angiogenesis and glucose metabolism. In this study, we addressed the precise role of the 3-phosphoinositide-dependent protein kinase 1 (PDK1)-regulated signaling network in endothelial cells in vivo, using vascular endothelial PDK1 knockout (VEPDK1KO) mice. Surprisingly, VEPDK1KO mice manifested enhanced glucose tolerance and whole-body insulin sensitivity due to suppression of their hepatic glucose production with no change in either peripheral glucose disposal or even impaired vascular endothelial function at 6 months of age.
View Article and Find Full Text PDFKrüppel-like factor 15 (KLF15), a member of the Krüppel-like factor family of transcription factors, has been found to play diverse roles in adipocytes in vitro. However, little is known of the function of KLF15 in adipocytes in vivo. We have now found that the expression of KLF15 in adipose tissue is down-regulated in obese mice, and we therefore generated adipose tissue-specific KLF15 transgenic (aP2-KLF15 Tg) mice to investigate the possible contribution of KLF15 to various pathological conditions associated with obesity in vivo.
View Article and Find Full Text PDFThe expansion of white adipose tissue (WAT) mass during the development of obesity is mediated in part through an increase in adipocyte size. Although gene expression profiles associated with adipogenesis in vitro and the development of obesity in vivo have been characterized by DNA microarray analysis, the role of chromatin and chromatin-modifying proteins in the regulation of gene expression related to adipocyte hypertrophy has remained unclear. We have now shown that maintenance of C57BL/6J mice on a high-fat diet for 16 weeks resulted in marked up-regulation of the expression of leptin, Mest (mesoderm specific transcript; also known as paternally expressed gene 1, or Peg1), and sFRP5 (secreted frizzled-related protein 5) genes in WAT.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2009
KLF15 (Krüppel-like factor 15) plays a key role in adipocyte differentiation and glucose transport in adipocytes through activation of its target genes. We have now identified six target genes regulated directly by KLF15 in 3T3-L1 mouse adipocytes with the use of a combination of microarray-based chromatin immunoprecipitation and gene expression analyses. We confirmed the direct regulation by KLF15 of one of these genes, that for adrenomedullin, with the use of a luciferase reporter assay in 3T3-L1 preadipocytes and adipocytes.
View Article and Find Full Text PDF