Publications by authors named "Tomoki Fukai 深井朋樹"

The frontal cortex-striatum circuit plays a pivotal role in adaptive goal-directed behaviors. However, it remains unclear how decision-related signals are mediated through cross-regional transmission between the medial frontal cortex and the striatum by neuronal ensembles in making decision based on outcomes of past action. Here, we analyzed neuronal ensemble activity obtained through simultaneous multiunit recordings in the secondary motor cortex (M2) and dorsal striatum (DS) in rats performing an outcome-based left-or-right choice task.

View Article and Find Full Text PDF

The agent learns to organize decision behavior to achieve a behavioral goal, such as reward maximization, and reinforcement learning is often used for this optimization. Learning an optimal behavioral strategy is difficult under the uncertainty that events necessary for learning are only partially observable, called as Partially Observable Markov Decision Process (POMDP). However, the real-world environment also gives many events irrelevant to reward delivery and an optimal behavioral strategy.

View Article and Find Full Text PDF

Evidence suggests that hippocampal adult neurogenesis is critical for discriminating considerably interfering memories. During adult neurogenesis, synaptic competition modifies the weights of synaptic connections nonlocally across neurons, thus providing a different form of unsupervised learning from Hebb's local plasticity rule. However, how synaptic competition achieves separating similar memories largely remains unknown.

View Article and Find Full Text PDF

Studying the underlying neural mechanisms of cognitive functions of the brain is one of the central questions in modern biology. Moreover, it has significantly impacted the development of novel technologies in artificial intelligence. Spontaneous activity is a unique feature of the brain and is currently lacking in many artificially constructed intelligent machines.

View Article and Find Full Text PDF

Various subtypes of inhibitory interneurons contact one another to organize cortical networks. Most cortical inhibitory interneurons express 1 of 3 genes: parvalbumin (PV), somatostatin (SOM), or vasoactive intestinal polypeptide (VIP). This diversity of inhibition allows the flexible regulation of neuronal responses within and between cortical areas.

View Article and Find Full Text PDF

Chimera states achieve the coexistence of coherent and incoherent subgroups through symmetry breaking and emerge in physical, chemical, and biological systems. We show the presence of amplitude-mediated multicluster chimera states in nonlocally coupled Stuart-Landau oscillators. We clarify the prerequisites for having different types of chimera states by analytically and numerically studying how phase transitions occur between these states.

View Article and Find Full Text PDF

The brain performs various cognitive functions by learning the spatiotemporal salient features of the environment. This learning requires unsupervised segmentation of hierarchically organized spike sequences, but the underlying neural mechanism is only poorly understood. Here, we show that a recurrent gated network of neurons with dendrites can efficiently solve difficult segmentation tasks.

View Article and Find Full Text PDF

Inhibitory neurons take on many forms and functions. How this diversity contributes to memory function is not completely known. Previous formal studies indicate inhibition differentiated by local and global connectivity in associative memory networks functions to rescale the level of retrieval of excitatory assemblies.

View Article and Find Full Text PDF

In natural auditory environments, acoustic signals originate from the temporal superimposition of different sound sources. The problem of inferring individual sources from ambiguous mixtures of sounds is known as blind source decomposition. Experiments on humans have demonstrated that the auditory system can identify sound sources as repeating patterns embedded in the acoustic input.

View Article and Find Full Text PDF

Isolated spikes and bursts of spikes are thought to provide the two major modes of information coding by neurons. Bursts are known to be crucial for fundamental processes between neuron pairs, such as neuronal communications and synaptic plasticity. Neuronal bursting also has implications in neurodegenerative diseases and mental disorders.

View Article and Find Full Text PDF

Spatial and temporal information from the environment is often hierarchically organized, so is our knowledge formed about the environment. Identifying the meaningful segments embedded in hierarchically structured information is crucial for cognitive functions, including visual, auditory, motor, memory, and language processing. Segmentation enables the grasping of the links between isolated entities, offering the basis for reasoning and thinking.

View Article and Find Full Text PDF

Experience-dependent plasticity is a key feature of brain synapses for which neuronal N-Methyl-D-Aspartate receptors (NMDARs) play a major role, from developmental circuit refinement to learning and memory. Astrocytes also express NMDARs, although their exact function has remained controversial. Here, we identify in mouse hippocampus, a circuit function for GluN2C NMDAR, a subtype highly expressed in astrocytes, in layer-specific tuning of synaptic strengths in CA1 pyramidal neurons.

View Article and Find Full Text PDF

Animals make decisions under the principle of reward value maximization and surprise minimization. It is still unclear how these principles are represented in the brain and are reflected in behavior. We addressed this question using a closed-loop virtual reality system to train adult zebrafish for active avoidance.

View Article and Find Full Text PDF

Our cognition relies on the ability of the brain to segment hierarchically structured events on multiple scales. Recent evidence suggests that the brain performs this event segmentation based on the structure of state-transition graphs behind sequential experiences. However, the underlying circuit mechanisms are poorly understood.

View Article and Find Full Text PDF

The frontal cortex-basal ganglia network plays a pivotal role in adaptive goal-directed behaviors. Medial frontal cortex (MFC) encodes information about choices and outcomes into sequential activation of neural population, or neural trajectory. While MFC projects to the dorsal striatum (DS), whether DS also displays temporally coordinated activity remains unknown.

View Article and Find Full Text PDF

During the execution of working memory tasks, task-relevant information is processed by local circuits across multiple brain regions. How this multiarea computation is conducted by the brain remains largely unknown. To explore such mechanisms in spatial working memory, we constructed a neural network model involving parvalbumin-positive, somatostatin-positive, and vasoactive intestinal polypeptide-positive interneurons in the hippocampal CA1 and the superficial and deep layers of medial entorhinal cortex (MEC).

View Article and Find Full Text PDF

In the hippocampus, locations associated with salient features are represented by a disproportionately large number of neurons, but the cellular and molecular mechanisms underlying this over-representation remain elusive. Using longitudinal calcium imaging in mice learning to navigate in virtual reality, we find that the over-representation of reward and landmark locations are mediated by persistent and separable subsets of neurons, with distinct time courses of emergence and differing underlying molecular mechanisms. Strikingly, we find that in mice lacking Shank2, an autism spectrum disorder (ASD)-linked gene encoding an excitatory postsynaptic scaffold protein, the learning-induced over-representation of landmarks was absent whereas the over-representation of rewards was substantially increased, as was goal-directed behavior.

View Article and Find Full Text PDF

The brain identifies potentially salient features within continuous information streams to process hierarchical temporal events. This requires the compression of information streams, for which effective computational principles are yet to be explored. Backpropagating action potentials can induce synaptic plasticity in the dendrites of cortical pyramidal neurons.

View Article and Find Full Text PDF

Hebbian learning of excitatory synapses plays a central role in storing activity patterns in associative memory models. Interstimulus Hebbian learning associates multiple items by converting temporal correlation to spatial correlation between attractors. Growing evidence suggests the importance of inhibitory plasticity in memory processing, but the consequence of such regulation in associative memory has not been understood.

View Article and Find Full Text PDF

Neurons which fire in a fixed temporal pattern (i.e., "cell assemblies") are hypothesized to be a fundamental unit of neural information processing.

View Article and Find Full Text PDF

The brain stores and recalls memories through a set of neurons, termed engram cells. However, it is unclear how these cells are organized to constitute a corresponding memory trace. We established a unique imaging system that combines Ca imaging and engram identification to extract the characteristics of engram activity by visualizing and discriminating between engram and non-engram cells.

View Article and Find Full Text PDF

Continuous attractor neural networks generate a set of smoothly connected attractor states. In memory systems of the brain, these attractor states may represent continuous pieces of information such as spatial locations and head directions of animals. However, during the replay of previous experiences, hippocampal neurons show a discontinuous sequence in which discrete transitions of the neural state are phase locked with the slow-gamma (∼30-50  Hz) oscillation.

View Article and Find Full Text PDF
Article Synopsis
  • Mathematical and statistical models are crucial in neuroscience for analyzing the electrical activity of single neurons and large networks.
  • The field is evolving quickly, presenting new challenges that need to be addressed.
  • Combining mechanistic theories with statistical approaches will enhance the advancement of computational neuroscience.
View Article and Find Full Text PDF

Adult neurogenesis in the hippocampal dentate gyrus (DG) of mammals is known to contribute to memory encoding in many tasks. The DG also exhibits exceptionally sparse activity compared to other systems, however, whether sparseness and neurogenesis interact during memory encoding remains elusive. We implement a novel learning rule consistent with experimental findings of competition among adult-born neurons in a supervised multilayer feedforward network trained to discriminate between contexts.

View Article and Find Full Text PDF

In the brain, decision making is instantiated in dedicated neural circuits. However, there is considerable individual variability in decision-making behavior, particularly under uncertainty. The origins of decision variability within these conserved neural circuits are not known.

View Article and Find Full Text PDF