Branched-chain amino acids (BCAAs) facilitate cancer cell proliferation and survival. Stresses, including X-irradiation, increase BCAA uptake. However, the role of BCAA metabolism in cancer cell survival remains unclear.
View Article and Find Full Text PDFRats were the first mammals to be domesticated for scientific research, and abundant physiological data are available on them. Rats are expected to continue to play an important role as experimental animals, especially with advancements such as CRISPR/Cas9 technology. Environmental enrichment aims to promote species-specific behaviors and psychological well-being.
View Article and Find Full Text PDFRadioresistant cancer cells are risk factors for recurrence and are occasionally detected in recurrent tumors after radiotherapy. Intratumor heterogeneity is believed to be a potential cause of treatment resistance. Heterogeneity in DNA content has also been reported in human colorectal cancer; however, little is known about how such heterogeneity changes with radiotherapy or how it affects cancer radioresistance.
View Article and Find Full Text PDFBone marrow cells are the most sensitive to exposure to X-rays in the body and are selectively damaged even by doses that are generally considered permissive in other organs. Ascorbic acid (Asc) is a potent antioxidant that is reported to alleviate damages caused by X-ray exposure. However, rodents can synthesize Asc, which creates difficulties in rigorously assessing its effects in such laboratory animals.
View Article and Find Full Text PDFHeme is an essential component of the hemoproteins involved in the mitochondrial electron transport chain (ETC). Cancer cells have been reported to display high heme levels and increased activity of heme-containing proteins. Consistently, inhibition of heme biosynthesis by the ALAD inhibitor succinylacetone (SA) has been shown to reduce tumor cell survival.
View Article and Find Full Text PDFAscorbate (vitamin C in primates) functions as a cofactor for a number of enzymatic reactions represented by prolyl hydroxylases and as an antioxidant due to its ability to donate electrons, which is mostly accomplished through non-enzymatic reaction in mammals. Ascorbate directly reacts with radical species and is converted to ascorbyl radical followed by dehydroascorbate. Ambiguities in physiological relevance of ascorbate observed during in vivo situations could be attributed in part to presence of other redox systems and the pro-oxidant properties of ascorbate.
View Article and Find Full Text PDFMetformin has many anti-cancer effects, alone or in combination with radiation. However, the mechanism underlying its radio-sensitized effect is still unclear, especially for cancer stem-like cells (CSCs). Here, the radio-sensitized effect of metformin was investigated, and its mechanism was revealed in CSCs derived from canine osteosarcoma cell line (HMPOS), a canine osteosarcoma cell line.
View Article and Find Full Text PDFPurpose: Eribulin, an inhibitor of microtubule dynamics, is known to show antitumor effects through its remodeling activity in the tumor vasculature. However, the extent to which the improvement of tumor hypoxia by eribulin affects radio-sensitivity remains unclear. We utilized 1-(2,2-dihydroxymethyl-3-F-fluoropropyl)-2-nitroimidazole (F-DiFA), a new PET probe for hypoxia, to investigate the effects of eribulin on tumor hypoxia and evaluate the radio-sensitivity during eribulin treatment.
View Article and Find Full Text PDFL-type amino acid transporter 1 (LAT1) is important for transporting neutral amino acids into cells. LAT1 expression is correlated with cancer malignancy, suggesting that LAT1 is a promising target for cancer therapy. JPH203, a potential novel drug targeting LAT1, has been shown to suppress tumor growth in various cancer cell lines.
View Article and Find Full Text PDFMitotic catastrophe is a form of cell death linked to aberrant mitosis caused by improper or uncoordinated mitotic progression. Abnormal centrosome amplification and mitotic catastrophe occur simultaneously, and some cells with amplified centrosomes enter aberrant mitosis, but it is not clear whether abnormal centrosome amplification triggers mitotic catastrophe. Here, to investigate whether radiation-induced abnormal centrosome amplification is essential for induction of radiation-induced mitotic catastrophe, centrinone-B, a highly selective inhibitor of polo-like kinase 4, was utilized to inhibit centrosome amplification, since polo-like kinase 4 is an essential kinase in centrosome duplication.
View Article and Find Full Text PDFMitochondrial dynamics are crucial for cellular survival in response to various stresses. Previously, we reported that Drp1 promoted mitochondrial fission after x-irradiation and its inhibition resulted in reduced cellular radiosensitivity and mitotic catastrophe. However, the mechanisms of radiation-induced mitotic catastrophe related to mitochondrial fission remain unclear.
View Article and Find Full Text PDFTo evaluate the metabolic responses in tumour cells exposed to ionizing radiation, oxygen consumption rate (OCR), cellular lipid peroxidation, cellular energy status (intracellular nucleotide pool and ATP production), and mitochondrial reactive oxygen species (ROS), semiquinone (SQ), and iron-sulphur (Fe-S) cluster levels were evaluated in human cervical carcinoma HeLa cells at 12 and 24 h after X-irradiation. LC/MS/MS analysis showed that levels of 8-iso PGF and 5-iPF-VI, lipid peroxidation products of membrane arachidonic acids, were not altered significantly in X-irradiated cells, although mitochondrial ROS levels and OCR significantly increased in the cells at 24 h after irradiation. LC/UV analysis revealed that intracellular AMP, ADP, and ATP levels increased significantly after X-irradiation, but adenylate energy charge (adenylate energy charge (AEC) = [ATP + 0.
View Article and Find Full Text PDFExcessive DNA damage induced by ionising radiation (IR) to normal tissue cells is known to trigger cellular senescence, a process termed stress-induced premature senescence (SIPS). SIPS is often accompanied by the production of reactive oxygen species (ROS), and this is reported to be important for the initiation and maintenance of SIPS. However, the source of ROS during SIPS after IR and their significance in radiation-induced normal tissue damage remain elusive.
View Article and Find Full Text PDFMitochondrial dynamics are suggested to be indispensable for the maintenance of cellular quality and function in response to various stresses. While ionizing radiation (IR) stimulates mitochondrial fission, which is mediated by the mitochondrial fission protein, dynamin-related protein 1 (Drp1), it remains unclear how IR promotes Drp1 activation and subsequent mitochondrial fission. Therefore, we conducted this study to investigate these concerns.
View Article and Find Full Text PDFCheckpoint kinase 1 (Chk1) is an evolutionarily conserved serine/threonine kinase that plays an important role in G/M checkpoint signaling. Here, we evaluate the radiosensitizing effects of a novel selective Chk1 inhibitor MK-8776, comparing its efficacy with a first-generation Chk1 inhibitor UCN-01, and attempt to elucidate the mechanism of radiosensitization. In a clonogenic survival assay, MK-8776 demonstrated a more pronounced radiosensitizing effect than UCN-01, with lower cytotoxicity.
View Article and Find Full Text PDFIt has recently been reported that radiation enhances mitochondrial energy metabolism in various tumor cell lines. To examine how this radiation-induced alteration in mitochondrial function influences tumor cell viability, various lipophilic triphenylphosphonium (TPP) cation derivatives and related compounds such as 4-hydroxy-2,2,6,6-tetramethyl-1-oxy-piperidin (Tempol) with TPP (named "Mito-") were designed to inhibit the mitochondrial electron transport chain. Mito-(CH)-Tempol (M10T) and its derivatives, Mito-(CH)-Tempol (M5T), Mito-(CH)-Tempol-Methyl (M10T-Me), Mito-CH (M10), and CH-Tempol (10T), were prepared.
View Article and Find Full Text PDFMitochondria strongly contribute to the maintenance of cellular integrity through various mechanisms, including oxidative adenosine triphosphate production and calcium homeostasis regulation. Therefore, proper regulation of the abundance, distribution and activity of mitochondria is crucial for the maintenance of cellular homeostasis. Previous studies have shown that ionizing radiation (IR) alters mitochondrial functions, suggesting that mitochondria are likely to be an important target of IR.
View Article and Find Full Text PDFAccumulating evidence suggests that mitochondrial dynamics is crucial for the maintenance of cellular quality control and function in response to various stresses. However, the role of mitochondrial dynamics in cellular responses to ionizing radiation (IR) is still largely unknown. In this study, we provide evidence that IR triggers mitochondrial fission mediated by the mitochondrial fission protein dynamin-related protein 1 (Drp1).
View Article and Find Full Text PDF