Publications by authors named "Tomoki Akita"

Honeycomb-like porous carbon nanostructures are rationally constructed from a metal-organic framework composite. The unique architecture with uniformly distributed high-density active sites significantly enhances the electrocatalytic performance by increasing the accessible active sites and enhancing mass transport of the gas and electrolyte, rendering the resulting catalyst adequate in reaching the desired catalytic performance afforded by Pt for the oxygen reduction reaction.

View Article and Find Full Text PDF

Organic molecular cage (CC3-R) with intrinsically porous skeleton is used as a support for immobilizing Rh nanoparticles (NPs) in an ultrasmall size of ∼1.1 nm for the first time. The CC3-R with the unique characteristic of high solubility can be utilized to homogenize the heterogeneous catalyst in solution.

View Article and Find Full Text PDF

Surfactant-free Pd nanoparticles, immobilized to a metal-organic framework (MIL-101), have been used for the first time as highly active and durable catalysts in water for biomass refining (hydrodeoxygenation of vanillin, a typical compound of lignin) with metal nanoparticle size- and location-dependent catalytic activity and selectivity.

View Article and Find Full Text PDF

For the first time, high surface area uniformly nitrogen (N)- and boron-nitrogen (BN)-decorated nanoporous carbons have been successfully fabricated by impregnation of ionic liquids (ILs) within a metal-organic framework (MOF), MIL-100(Al), followed by carbonization, which exhibit remarkable CO2 and H2 adsorption capacities.

View Article and Find Full Text PDF

For the first time, this work presents surfactant-free monometallic and bimetallic polyhedral metal nanocrystals (MNCs) immobilized to a metal-organic framework (MIL-101) by CO-directed reduction of metal precursors at the solid-gas interface. With this novel method, Pt cubes and Pd tetrahedra were formed by CO preferential bindings on their (100) and (111) facets, respectively. PtPd bimetallic nanocrystals showed metal segregation, leading to Pd-rich core and Pt-rich shell.

View Article and Find Full Text PDF

Ag/Au bimetallic nanoparticles (BNPs) with a size less than 2 nm were prepared by physical mixture of colloidal dispersions of Ag and Au nanoparticles (NPs). This provides an example of fabrication of BNPs with self-organization by the reaction between metal NPs. Although Ag/Au BNPs having different structures and compositions are one of the most widely studied bimetallic systems in the literature due to their wide range of uses such as in catalysis, electronics, plasmonics, optical sensing, and surface-enhanced Raman scattering, we first prepared such BNPs by physical mixture and characterized them by UV-vis spectroscopy, SERS, XPS, TEM, and EDS in HR-STEM.

View Article and Find Full Text PDF

Many researchers have investigated the catalytic performance of gold nanoparticles (GNPs) supported on metal oxides for various catalytic reactions of industrial importance. These studies have consistently shown that the catalytic activity and selectivity depend on the size of GNPs, the kind of metal oxide supports, and the gold/metal oxide interface structure. Although researchers have proposed several structural models for the catalytically active sites and have identified the specific electronic structures of GNPs induced by the quantum effect, recent experimental and theoretical studies indicate that the perimeter around GNPs in contact with the metal oxide supports acts as an active site in many reactions.

View Article and Find Full Text PDF

The crystal structure of a new type of molybdenum oxide crystal encapsulated in a single-walled carbon nanotube (CNT) was examined via diffraction and spectroscopic techniques using both X-rays and electron beams. This new type of molybdenum oxide crystal has a chemical bonding state of MoO3, as confirmed by X-ray absorption spectroscopy, and the MoO3 units exhibit axial symmetry, as clarified by electron diffraction from bundled and individual CNTs encapsulating the crystal. To obtain three-dimensional information on the structure, a cross-sectional sample was prepared using a conventional dimple and ion-mill method.

View Article and Find Full Text PDF

The choice of a suitable support for gold nanoparticles (Au NPs) enabled the direct oxidation of unreactive aliphatic alcohol, 1-octanol, to octanoic acid and octyl octanoate in the absence of a base. Under optimized conditions, Au NPs supported on NiO (Au/NiO) exhibited remarkably high catalytic activities and excellent selectivities to octanoic acid (e.g.

View Article and Find Full Text PDF

Spinel lithium titanate (Li(4)Ti(5)O(12), LTO) is a promising anode material for a lithium ion battery because of its excellent properties such as high rate charge-discharge capability and life cycle stability, which were understood from the viewpoint of bulk properties such as small lattice volume changes by lithium insertion. However, the detailed surface reaction of lithium insertion and extraction has not yet been studied despite its importance to understand the mechanism of an electrochemical reaction. In this paper, we apply both atomic force microscopy (AFM) and transmission electron microscopy (TEM) to investigate the changes in the atomic and electronic structures of the Li(4)Ti(5)O(12) surface during the charge-discharged (lithium insertion and extraction) processes.

View Article and Find Full Text PDF

Despite the fragility of TiO(2) under electron irradiation, the intrinsic structure of Au/TiO(2) catalysts can be observed by environmental transmission electron microscopy. Under reaction conditions (CO/air 100 Pa), the major {111} and {100} facets of the gold nanoparticles are exposed and the particles display a polygonal interface with the TiO(2) support bounded by sharp edges parallel to the 〈110〉 directions.

View Article and Find Full Text PDF

A one-pot synthesis of non-noble transition metal-based core-shell nanoparticles (NPs) has been developed under ambient conditions. The obtained Cu@M (M = Co, Fe, Ni) NPs exhibit superior catalytic activity for hydrolytic dehydrogenation of NH(3)BH(3), compared to the alloy and monometallic counterparts.

View Article and Find Full Text PDF

Bimetallic Au-Pd nanoparticles (NPs) were successfully immobilized in the metal-organic frameworks (MOFs) MIL-101 and ethylenediamine (ED)-grafted MIL-101 (ED-MIL-101) using a simple liquid impregnation method. The resulting composites, Au-Pd/MIL-101 and Au-Pd/ED-MIL-101, represent the first highly active MOF-immobilized metal catalysts for the complete conversion of formic acid to high-quality hydrogen at a convenient temperature for chemical hydrogen storage. Au-Pd NPs with strong bimetallic synergistic effects have a much higher catalytic activity and a higher tolerance with respect to CO poisoning than monometallic Au and Pd counterparts.

View Article and Find Full Text PDF

In this work, with a zeolite-type metal-organic framework as both a precursor and a template and furfuryl alcohol as a second precursor, nanoporous carbon material has been prepared with an unexpectedly high surface area (3405 m(2)/g, BET method) and considerable hydrogen storage capacity (2.77 wt % at 77 K and 1 atm) as well as good electrochemical properties as an electrode material for electric double layer capacitors. The pore structure and surface area of the resultant carbon materials can be tuned simply by changing the calcination temperature.

View Article and Find Full Text PDF

UV light irradiation of TiO(2) (λ > 320 nm) in a mixed solution of AgNO(3) and S(8) has led to the formation of Ag(2)S quantum dots (QDs) on TiO(2), while Ag nanoparticles (NPs) are photodeposited without S(8). Photoelectrochemical measurements indicated that the Ag(2)S photodeposition proceeds via the preferential reduction of Ag(+) ions to Ag(0), followed by the chemical reaction with S(8). The application of this in situ photodeposition technique to mesoporous (mp) TiO(2) nanocrystalline films coated on fluorine-doped SnO(2) (FTO) electrodes enables formation of Ag(2)S QDs (Ag(2)S/mp-TiO(2)/FTO).

View Article and Find Full Text PDF

For the first time, this work presents Au@Ag core-shell nanoparticles (NPs) immobilized on a metal-organic framework (MOF) by a sequential deposition-reduction method. The small-size Au@Ag NPs reveal the restriction effects of the pore/surface structure in the MOF. The modulation of the Au/Ag ratio can tune the composition and a reversed Au/Ag deposition sequence changes the structure of Au-Ag NPs, while a posttreatment process transforms the core-shell NPs to a AuAg alloy.

View Article and Find Full Text PDF

UV-light irradiation to TiO(2) in an aqueous ethanol solution of (NH(4))(2)MoS(4) under deaerated conditions has yielded molybdenum(IV) sulfide nanoparticles on a TiO(2) surface (MoS(2)/TiO(2)) to be transformed into molybdenum(VI) oxide species highly dispersed at a molecular level by a subsequent heating at 773K in air (m-MoO(3)/TiO(2)). In HCOOH aqueous solutions, the MoS(2)/TiO(2) system exhibits a high level of photocatalytic activity for H(2) generation, while the m-MoO(3)/TiO(2) system shows unique photochromism.

View Article and Find Full Text PDF

Nano-submicron particles of sub-stoichiometric titanium oxide (TiOx) were synthesized by irradiation of TiO(2) particles dispersed in liquid with a Nd:YAG pulsed UV laser, and their physicochemical and electrochemical properties were examined. After laser irradiation for 1 h, spherical oxide particles of up to ca. 300 nm in diameter were formed regardless of the liquid used, however the reduction of TiO(2) largely depended on the liquid: acetonitrile most strongly promoted the reduction of TiO(2) by UV laser irradiation.

View Article and Find Full Text PDF

Magnetically recyclable Au@Co core-shell nanoparticles were successfully synthesized in a one-step seeding-growth process within a few minutes. They were thermally stable and exhibited higher catalytic activity toward the dehydrogenation of ammonia borane than Au-Co alloy and the pure metal counterparts. This is a large enhancement in the catalytic activity of core-shell structured nanoparticles and will provide a new design principle for heterogeneous catalysis.

View Article and Find Full Text PDF

Gold-nickel nanoparticles (NPs) of 3-4 nm diameter embedded in silica nanospheres of around 15 nm have been prepared by using [Au(en)(2)Cl(3)] and [Ni(NH(3))(6)Cl(2)] as precursors in a NP-5/cyclohexane reversed-micelle system, and by in situ reduction in an aqueous solution of NaBH(4)/NH(3)BH(3). Compared with monometallic Au@SiO(2) and Ni@SiO(2), the as-synthesized Au-Ni@SiO(2) catalyst shows higher catalytic activity and better durability in the hydrolysis of ammonia borane, generating a nearly stoichiometric amount of hydrogen. During the generation of H(2), the synergy effect between gold and nickel is apparent: The nickel species stabilizes the gold NPs and the existence of gold helps to improve the catalytic activity and durability of the nickel NPs.

View Article and Find Full Text PDF

Au(25) clusters supported on hydroxyapatite oxidized styrene in toluene with 100% conversion and 92% selectivity to the epoxide, under optimum conditions and using anhydrous tert-butyl hydroperoxide (TBHP) as an oxidant.

View Article and Find Full Text PDF