Publications by authors named "Tomoka Abe"

A dual catalytic system, dirhodium tetrapivalate/ytterbium(III) triflate, enables the three-component reactions of α-alkyl-α-diazoesters, aromatic aldehydes, and N-benzylidenebenzylamine derivatives to afford the corresponding β-amino alcohols in good yields after hydrolysis of the oxazolidine cycloadducts, whereas no β-amino alcohols are obtained in the absence of ytterbium(III) triflate. A similar dual catalytic system, dirhodium tetraacetate/ytterbium(III) triflate, is found to be effective in accelerating the reactions of α-aryl-α-diazoesters in high yields. Furthermore, the reactions using dimethyl diazomalonate are described.

View Article and Find Full Text PDF

The components of a 4:1 mixture of Rh(III)Cl tetrakis(4-methylphenyl)porphyrin 1 and a bowl-shaped tetra(4-pyridyl)cavitand 4 self-assemble into a 4:1 complex 14•4 via Rh-pyridyl axial coordination bonds. The single-crystal X-ray diffraction analysis and variable-temperature (VT) (1)H NMR study of 14•4 indicated that 14•4 behaves as a quadruple interlocking gear with an inner space, wherein (i) four subunits-1 are gear wheels and four p-pyridyl groups in subunit-4 are axes of gear wheels, (ii) one subunit-1 and two adjacent subunits-1 interlock with one another cooperatively, and (iii) four subunits-1 in 14•4 rotate quickly at 298 K on the NMR time scale. Together, the extremely strong porphyrin-Rh-pyridyl axial coordination bond, the rigidity of the methylene-bridge cavitand as a scaffold of the pyridyl axes, and the cruciform arrangement of the interdigitating p-tolyl groups as the teeth moiety of the gear wheels in the assembling 14-unit make 14•4 function as a quadruple interlocking gear in solution.

View Article and Find Full Text PDF