TND1128, a 5-deazaflavin derivative, is a drug with self-redox ability. We examined the effect of TND1128 on the level of mitochondrial membrane potential (ΔΨ), which is the most critical motive power for the biosynthesis of ATP. We prepared brain slices from mice pretreated with TND1128 (0.
View Article and Find Full Text PDFThis study describes the development of novel alloxazine analogues as potent antitumor agents with enhanced selectivity for tumour cells. Twenty-nine out of 45 newly compounds were investigated for their growth inhibitory activities, against two human tumour cell lines, namely, the human T-cell acute lymphoblastoid leukaemia cell line (CCRF-HSB-2) and human oral epidermoid carcinoma cell line (KB), and the antitumor agent "Ara-C" was used as a positive reference in this investigation. Compounds and were the highest among their analogues, against both tumour cell lines (CCRF-HSB-2 and KB).
View Article and Find Full Text PDFNovel 5-deazaflavins were designed as potential anticancer candidates. Compounds and demonstrated high cytotoxicity against MCF-7 cell line with IC of 0.5-190nM.
View Article and Find Full Text PDFWe have no definitive treatment for dementia characterized by prolonged neuronal death due to the enormous accumulation of foreign matter, such as β-amyloid. Since Alzheimer's type dementia develops slowly, we may be able to delay the onset and improve neuronal dysfunction by enhancing the energy metabolism of individual neurons. TND1128, a derivative of 5-deazaflavin, is a chemical known to have an efficient self-redox ability.
View Article and Find Full Text PDFAdenosine triphosphate (ATP) is the most vital energy source produced mainly in the mitochondria. Age-related mitochondrial dysfunction is associated with brain diseases. Nicotinamide adenine dinucleotide (NAD) is an essential cofactor for energy production in mitochondria.
View Article and Find Full Text PDFProtein tyrosine kinases (PTKs) are the most potential therapeutic targets for cancer. Herein, we present a sound rationale for synthesis of a series of novel 2-(methylthio), 2-(substituted alkylamino), 2-(heterocyclic substituted), 2-amino, 2,4-dioxo and 2-deoxo-5-deazaalloxazine derivatives by applying structure-based drug design (SBDD) using AutoDock 4.2.
View Article and Find Full Text PDFPathogenic bacteria synthesize and secrete toxic low molecular weight compounds as virulence factors. These microbial toxins play essential roles in the pathogenicity of bacteria in various hosts, and are emerging as targets for antivirulence strategies. Toxoflavin, a phytotoxin produced by Burkholderia glumae BGR1, has been known to be the key factor in rice grain rot and wilt in many field crops.
View Article and Find Full Text PDFPhotosensitizers are common in nature and play diverse roles as defense compounds and pathogenicity determinants and as important molecules in many biological processes. Toxoflavin, a photosensitizer produced by Burkholderia glumae, has been implicated as an essential virulence factor causing bacterial rice grain rot. Toxoflavin produces superoxide and H₂O₂ during redox cycles under oxygen and light, and these reactive oxygen species cause phytotoxic effects.
View Article and Find Full Text PDF4-Alkylidenehydrazino-1H-pyrazolo[3,4-d]pyrimidines, 4-arylmethylidenehydrazino-1H-pyrazolo[3,4-d]pyrimidines, and 2-substituted 7H-pyrazolo[4,3-e]-1,2,4-triazolo-[1,5-c]-pyrimidines as potential xanthine oxidase inhibitors were docked into the active site of the bovine milk xanthine dehydrogenase using two scoring functions involved in AutoDock 3.05 and the CAChe 6.1.
View Article and Find Full Text PDFBurkholderia glumae produces toxoflavin, a phytotoxin with a broad host range, which is a key virulence factor in bacterial rice grain rot. Based on genetic analysis, we previously reported that ToxR, a LysR-type regulator, activates both the toxABCDE (toxoflavin biosynthesis genes) and toxFGHI (toxoflavin transporter genes) operons in the presence of toxoflavin as a coinducer. Quorum sensing regulates the expression of the transcriptional activator ToxJ that is required for tox gene expression.
View Article and Find Full Text PDFVarious novel 5-(monosubstituted amino)-2-deoxo-2-phenyl-5-deazaflavins derivatives have been synthesized by direct coupling of 5-deazaflavins and N-alkyl or aryl amines. The antitumor activities against human tumor cell lines CCRF-HSB-2 and KB cells have been investigated in vitro and many compounds showed promising potential antitumor activities with less cytotoxicities. AutoDock molecular docking into PTK (PDB code: 1t46) has been done for lead optimization of these compounds as potential PTK inhibitors.
View Article and Find Full Text PDFNucleic Acids Symp Ser (Oxf)
November 2010
The regioselective glycosylation of reumycins (3) reacted with 1-O-acetyl-2,3,5-tri-O-benzoyl-beta-D-ribofuranose (4) and BSTFA in acetonitrile at 90 degrees C followed by reaction of SnCl(4) in dioxane at room temperature afforded the 1-(2',3',5'-tri-O-benzoyl-beta-D-ribofuranosyl)- 6-methylpyrimido[5,4-e][1,2,4]triazine-5,7(1H,6H)-diones (5) (toxoflavin type nucleosides), while the similar alkylations with 1-bromo-2,3,5-tri-O-benzoyl-beta-D-ribofuranose (6) and KHCO(3) in DMF at 100 degrees C gave predominantly the 8-(2',3',5'-tri-O-benzoyl-beta-D-ribofuranosyl)-6-methylpyrimido[5,4-e]-[1,2,4]triazine-5,7(6H,8H)-diones (7) (fervenulin type nucleosides). On the other hand, treatment of the 7-azapteridine nucleosides (5 and 7) in alkali solution at room temperature yielded the corresponding 1-(beta-D-ribofuranosyl)-5-methyl-1H-imidazo[4,5-e][1,2,4]- triazin-6(5H)-ones (8) and 7-(beta-D-ribofuranosyl)-5-methyl-5H-imidazo[4,5-e][1,2,4]triazin-6(7H)-ones (9) [6-azapurine nucleosides] by benzilic acid rearrangement. Some 7-azapteridine nucleosides (5 and 7-9) showed antitumor activities and anti-coccidiosis activities.
View Article and Find Full Text PDFNovel deazaflavin-cholestane hybrid compounds, 3',8'-disubstituted-5'-deazacholest-2,4-dieno[2,3-g]pteridine-2',4'(3'H,8'H)-diones, have been synthesized by condensation reaction between 6-(monosubstituted amino)-pyrimidin-2,4(1H,3H)-diones and 2-hydroxymethylenecholest-4-en-3-one in presence of p-toluenesulfonic acid monohydrate and diphenyl ether. The antitumor activities against human tumor cell lines (CCRF-HSB-2 and KB cells) have been investigated in vitro, and many of these compounds showed promising antitumor activities. Furthermore, molecular docking study using LigandFit within the software package Discovery Studio 1.
View Article and Find Full Text PDFVarious analogs of flavins, 5-deazaflavins, and flavin-5-oxides were docked into the binding site of protein tyrosine kinase pp60(c-src), and some of them were assayed for their potential antitumor and PKC (protein kinase C) inhibitory activities in vitro. The results considering SAR (structure-activity relationship) revealed that the higher binding affinities obtained include compounds with the structure modifications on the flavin or 5-deazaflavin skeleton, namely, NH(2) or Ph (phenyl-) group at the C-2 position and so on. Computationally designed compounds 4a, 6a, b, 7, 11b, c, 12, 15, and 22c exhibited good docking results suggesting that they are potentially active antitumor agents.
View Article and Find Full Text PDFVarious novel 10-alkyl-2-deoxo-2-methylthioflavin-5-oxides and their 2-alkylamino derivatives were prepared by facile nitrosative cyclization of 6-(N-alkylanilino)-2-methylthiopyrimidin-4(3H)-ones followed by nucleophilic replacement of the 2-methylthio moiety by different amines, and acidic hydrolysis of the 2-methylthio moiety afforded the corresponding flavin derivatives. 2-Deoxo-2-methylthio-5-deazaalloxazines and 2-deoxo-2-methylthioalloxazine-5-oxides were also prepared by Vilsmeier reaction and by nitrosation of 6-anilino-2-methylthiopyrimidin-4(3H)-ones, respectively. Then, they were subjected to nucleophilic replacement with appropriate amines to produce the corresponding 2-alkylamino derivatives.
View Article and Find Full Text PDFVarious novel 10-alkyl-2-deoxo-2-methylthio-5-deazaflavins have been synthesized by reaction of 6-(N-alkylanilino)-2-methylthiopyrimidin-4(3H)-ones with Vilsmeier reagent. The similar 2-(N-substituted amino) derivatives were prepared by nucleophilic replacement reaction of the 2-methylthio moiety by appropriate amines. The 2-oxo derivatives (i.
View Article and Find Full Text PDFNovel 2-deoxo-2-phenyl-5-deazaflavins and 2-deoxo-2-phenylflavin-5-oxides were prepared as a new class of antitumor agents and showed significant antitumor activities against NCI-H 460, HCT 116, A 431, CCRF-HSB-2, andKB cell lines. In vivo investigation, 2-deoxo-10-methyl-2-phenyl-5-deazaflavin exhibited the effective antitumor activity against A 431 human adenocarcinoma cells transplanted subcutaneously into nude mouse. Furthermore, AutoDock study has been done by binding of the flavin analogs into PTK pp60(c-src), where a good correlation between their IC(50) and AutoDock binding free energy was exhibited.
View Article and Find Full Text PDFBurkholderia glumae BGR1 produces a broad-host range phytotoxin, called toxoflavin, which is a key pathogenicity factor in rice grain rot and wilt in many field crops. Our molecular and genetic analyses of toxoflavin-deficient mutants demonstrated that gene clusters for toxoflavin production consist of four transcriptional units. The toxoflavin biosynthesis genes were composed of five genes, toxA to toxE, as Suzuki et al.
View Article and Find Full Text PDFSevere wilt symptoms similar to bacterial wilt caused by Ralstonia solanacearum were observed in tomato, hot pepper, eggplant, potato, perilla, sesame, and sunflower in 2000 and 2001 in Korea. From diseased crops at 65 different locations, we obtained 106 isolates that produced green pigment on CPG medium; 36 were isolated from discolored rice panicles. The causal pathogen was identified as Burkholderia glumae based on its biochemical characteristics, fatty acid methyl ester analysis, and 16S rRNA gene sequence.
View Article and Find Full Text PDF