Background: Microglial cells play an important role in the immune system in the brain. Activated microglial cells are not only injurious but also neuroprotective. We confirmed marked lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) expression in microglial cells in pathological lesions in the neonatal hypoxic-ischemic encephalopathy (nHIE) model brain.
View Article and Find Full Text PDFNeonatal hypoxic-ischemic encephalopathy (nHIE) is a major neonatal brain injury. Despite therapeutic hypothermia, mortality and sequelae remain severe. The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is associated with the pathophysiology of nHIE.
View Article and Find Full Text PDFBackground and Purpose- oxLDL (oxidized low-density lipoprotein) has been known for its potential to induce endothelial dysfunction and used as a major serological marker of oxidative stress. Recently, LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1), a lectin-like receptor for oxLDL, has attracted attention in studies of neuronal apoptosis and stroke. We aim to investigate the impact of -deficiency on spontaneous hypertension-related brain damage in the present study.
View Article and Find Full Text PDFObjective: To evaluate the soluble form of lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) as a biomarker of severity staging and prognosis in neonatal hypoxic-ischemic encephalopathy (HIE).
Study Design: We performed an observational study enrolling 27 infants with HIE and 45 control infants of gestational age ≥36 weeks and birth weight ≥1800 g. The HIE criteria were pH ≤7.
Neonatal hypoxic-ischemic encephalopathy (HIE) remains a serious burden in neonatal care. Hypothermia provides a good outcome in some babies with HIE. Here, we investigated the biological mechanisms of its neuroprotective effect and sought for a new therapeutic target.
View Article and Find Full Text PDF