Uridine diphosphate glucuronosyltransferases (UGTs) are highly expressed in the liver and are involved in the metabolism of many drugs. In particular, UGT1A1 has a genetic polymorphism that causes decreased activity, leading to drug-induced hepatotoxicity. Therefore, an evaluation system that accurately predicts the kinetics of drugs involving UGT1A1 is required.
View Article and Find Full Text PDFIn drug development, a system for predicting drug metabolism and drug-induced toxicity is necessary to ensure drug safety. Cytochrome P450 family 3 subfamily A member 4 (CYP3A4) is an important drug-metabolizing enzyme expressed in the liver and small intestine, and predicting CYP3A4-mediated drug metabolism and drug-induced toxicity is essential. We previously developed procedures to differentiate human induced pluripotent stem (iPS) cells into hepatocyte-like cells (HLCs) or intestinal epithelial-like cells (IECs) with a fetal phenotype as well as a highly efficient genome editing technology that could enhance the homologous recombination efficiency at any locus, including CYP3A4.
View Article and Find Full Text PDF