AmyR, a fungal transcriptional activator responsible for induction of amylolytic genes in Aspergillus nidulans, localizes to the nucleus in response to the physiological inducer isomaltose. Maltose, kojibiose, and D: -glucose were also found to trigger the nuclear localization of GFP-AmyR. Isomaltose- and kojibiose-triggered nuclear localization was not inhibited by the glucosidase inhibitor, castanospermine, while maltose-triggered localization was inhibited.
View Article and Find Full Text PDFCassava is a starch-containing root crop that is widely used as a raw material in a variety of industrial applications, most recently in the production of fuel ethanol. In the present study, ethanol production from raw (uncooked) cassava flour by simultaneous saccharification and fermentation (SSF) using a preparation consisting of multiple enzyme activities from Aspergillus kawachii FS005 was investigated. The multi-activity preparation was obtained from a novel submerged fermentation broth of A.
View Article and Find Full Text PDFAmyR is a Zn(II)(2)Cys(6) transcriptional activator that regulates expression of the amylolytic genes in Aspergillus species. Subcellular localization studies of GFP-fused AmyR in A. nidulans revealed that the fusion protein preferentially localized to the nucleus in response to isomaltose, the physiological inducer of the amylolytic genes.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
October 2006
Aspergillus nidulans possessed 16 putative amylolytic genes consisting of 7 alpha-glucosidase (agdA-F), 7 alpha-amylase (amyA-F), and 2 glucoamylase (glaA and B) genes on the genome. Among them, the agdA, agdB, agdE, agdF, amyA, amyB, amyF, and glaB genes were induced by isomaltose. AmyR, a Zn(II)(2)Cys(6) transcription factor, was required for the induction.
View Article and Find Full Text PDF