Nanodiscs belong to a category of water-soluble lipid bilayer nanoparticles. In vivo nanodisc platforms are useful for studying isolated membrane proteins in their native lipid environment. Thus, the development of a practical method for nanodisc reconstruction has garnered consider-able research interest.
View Article and Find Full Text PDFAu(i)-, Ag(i)-, and Pd(ii)-coordination-driven diverse self-assembly of an N-heterocyclic carbene (NHC)-based amphiphile was demonstrated herein. The transition metals had significant effects over the whole system, setting the self-assembly direction of the NHC-based amphiphile. More specifically, Au(i)- and Ag(i)-coordination to the NHC-based amphiphile promoted the formation of spherical and hexagonal structures, while Pd(ii)-coordination promoted the formation of cylindrical and lamellar structures.
View Article and Find Full Text PDFHydrogenolysis of the furan rings of furfural and furfuryl alcohol, which can be obtained from biomass, has attracted attention as a method for obtaining valuable chemicals such as 1,2-pentanediol. In this study, we examined the hydrogenolysis of furfuryl alcohol to 1,2-pentanediol over Pd/C, Pt/C, Rh/C, and various supported Ru catalysts in several solvents. In particular, we investigated the effects of combinations of solvents and supports on the reaction outcome.
View Article and Find Full Text PDFA total of 100 environmental samples were investigated for their ability to degrade 1 g/L surfactin as a substrate. Among them, two enrichment cultures, which exhibited microbial growth as well as surfactin degradation, were selected and further investigated. After several successive cultivations, nanopore sequencing of full-length 16S rRNA genes with MinION was used to analyze the bacterial species in the enrichment cultures.
View Article and Find Full Text PDFA biomembrane's role is to be a barrier for interior cytosol from an exterior environment to execute the cell's normal biological functions. However, a water-soluble peptide called cell-penetrating peptide (CPP) has been known for its ability to directly penetrate through the biomembranes into cells (cytolysis) without perturbating cell viability and expected to be a promising drug delivery vector. Examples of CPP include peptides with multiple arginine units with strong cationic properties, which is the key to cytolysis.
View Article and Find Full Text PDFWe report the synthesis of bolaamphiphilic alkenyl phosphonic acid (BPC) through the olefin crossmetathesis reaction of vinylphosphonic acid with 1,11-dodecadiene in the presence of a Ru-carbene catalyst. BPC possesses two trans-P-C=C moieties and is thus readily soluble in water up to 3.4 g L, as confirmed by H nuclear magnetic resonance (NMR) measurements.
View Article and Find Full Text PDFIn this study, an N-heterocyclic carbene (NHC)-based metal coordinate surfactant (MCS), NHC-Au-MCS, in which the NHC framework afforded the bonding of the Au(I) at the linkage of the hydrophilic and hydrophobic moieties, was synthesized. The structure of NHC-Au-MCS was confirmed by H and C NMR spectroscopic measurements together with elemental analysis. Matrix-assisted laser desorption/ionization (MALDI), laser desorption/ionization (LDI), and electrospray ionization mass spectrometry (ESI-MS) indicated the distinct reactivity of NHC-Au-MCS, such as the exchange of Br to Cl and the formation of a cationic Au complex, where the two NHC ligands were coordinated to an Au(I) center upon laser activation.
View Article and Find Full Text PDFWe report the synthesis of amphiphilic dodecenyl phosphonic acid PC from vinylphosphonic acid, a reactive phosphonic acid intermediate. The trans-P-C=C moiety enabled PC to disperse well in water. Surface tension and dynamic light scattering measurements revealed that PC exhibited high surface activity and reduced the surface tension of water from 72.
View Article and Find Full Text PDFBacillus subtilis RB14 produces the lipopeptide antibiotic iturin A by submerged and biofilm fermentation. In this study, we optimized the conditions for iturin A production in a jar fermentor. The maximum yield of iturin A was 932 mg L after 120 h.
View Article and Find Full Text PDFThe surface and interfacial properties of casein-hydrolyzed peptides were evaluated using measurement of surface and interfacial tensions, surface viscosity, dynamic light scattering (DLS), and freeze-fracture transmission electron microscopy (FF-TEM). In this study, high internal oil phase emulsion (HIPE) gels were successfully prepared, using the surface and interfacial properties of casein peptides. The casein peptides exhibited surface and interfacial activities.
View Article and Find Full Text PDFBacillus licheniformis NBRC 104464 produces a cyclic lipopeptide different from surfactin. After we performed liquid chromatography fractionation and purification, we used structural analyses to identify the cyclic lipopeptide as lichenysin. Surface tension measurements of lichenysin sodium salt in water yielded a critical micelle concentration (CMC) of 1.
View Article and Find Full Text PDFIn this study, an N-heterocyclic carbene (NHC)-based metallosurfactant (MS), NHC-PdMS, was synthesized, where Pd(II) was bound to the NHC framework via a robust Pd-carbene bond with NEt as a co-ligand. Surface tension measurements revealed that the critical micelle concentration (CMC) of NHC-PdMS (1.8×10 M) was one order of magnitude lower than that of its MS precursor (imidazolium bromide).
View Article and Find Full Text PDFNanodiscs are self-assembled discoidal nanoparticles composed of amphiphilic α-helical scaffold proteins or peptides that accumulate around the circumference of a lipid bilayer. In this study, Pxt-5, which is an antimicrobial peptide isolated from the skin of Xenopus tropicalis, and its modified peptide (Modify-Pxt-5) were synthesized by solid-phase peptide synthesis (SPPS).Their surface properties, which are an important factor in inducing nanodisc formation, were investigated by circular dichroism (CD) spectroscopy, surface tension measurement, phospholipid vesicle clearance assay, and negative-staining transmission electron microscopy (NS-TEM).
View Article and Find Full Text PDFWe discovered that Candida floricola ZM1502 is capable of selectively producing the promising hydrophilic biosurfactants, acid-form sophorolipids (SLs), from glycerol. However, productivity was very low (approximately 3.5 g L) under the initial culture conditions.
View Article and Find Full Text PDFBiosurfactants (BSs) are produced in abundance from various feedstocks by diverse microorganisms, and are used in various applications. In this paper, we describe a new yeast isolate that produces glycolipid-BSs from glycerol, with the aim of enhancing the utilization of the surplus glycerol produced by the oleo-chemical industry. As a result of the screening, strain ZM1502 was obtained as a potential producer of BS from glycerol.
View Article and Find Full Text PDFSixty Bacillus subtilis strains were investigated for their ability to produce cyclic lipopeptides (CLPs). Among them, B. subtilis NBRC 109107 produced at least three types of CLPs by high-performance liquid chromatography (HPLC) analysis, and these CLPs were thought to be surfactin, iturin A, and fengycin by polymerase chain reaction amplification of respective CLP synthetase-encoding genes.
View Article and Find Full Text PDFThe cyclic lipopeptide surfactin (SF) is one of the promising environmental friendly biosurfactants abundantly produced by microorganisms such as Bacillus subtilis. SF shows excellent surface properties at various pH, together with lower toxicity and higher biodegradability than commonly used petroleum-based surfactants. However, the effect of the dissociation degree of SF on self-assembly is still incompletely understood, even though two acidic amino acid residues (Asp and Glu) are known to influence eventual surface and biological functions.
View Article and Find Full Text PDFJ Venom Anim Toxins Incl Trop Dis
May 2017
Background: Mass spectrometry-guided venom peptide profiling is a powerful tool to explore novel substances from venomous animals in a highly sensitive manner. In this study, this peptide profiling approach is successfully applied to explore the venom peptides of a Japanese solitary carpenter bee, (Hymenoptera: Apoidea: Apidae: Anthophila: Xylocopinae: Xylocopini). Although interesting biological effects of the crude venom of carpenter bees have been reported, the structure and biological function of the venom peptides have not been elucidated yet.
View Article and Find Full Text PDFThe cyclization of amphiphiles has emerged as an attractive strategy for inducing remarkable properties in these materials without changing their chemical composition. In this study, we successfully synthesized three cyclic polyoxyethylene dodecyl ethers (c-POEC12's) with different ring sizes and explored the effects of their topology on their surface and self-assembly properties related to their function, comparing them with those of their linear counterparts (l-POEC12's). The surface activity of the c-POEC12's remained almost constant despite the change in their hydrophobic and hydrophilic balance (HLB) value, while that of the l-POEC12's decreased with an increase in the HLB value as general surfactants.
View Article and Find Full Text PDFGlyceric acids (GAs) esterified with long acyl chains (> C16) exhibit antitrypsin activity (Folia Microbiol. 46, 21-23 (2001)). However, their hydrophobic nature, derived from the long acyl chains, has limited the number of studies on their physical and biological properties.
View Article and Find Full Text PDFPxt peptides (Pxt-1 through Pxt-12) have been isolated from amphibian, Xenopus tropicalis Pxt-related peptides (Pxt-2, Pxt-5, Pxt-12, reverse Pxt-2, reverse Pxt-5 and reverse Pxt-12) with significant foaming properties were further characterized. In the physicochemical experiments, all Pxt-related peptides formed significant amphiphilic α-helices in 50% 2,2,2-trifluoroethanol by circular dichroism measurements. Among Pxt-related peptides, both Pxt-5 and reverse Pxt-5 were the most effective in reducing their surface tensions.
View Article and Find Full Text PDFCyclic peptide of surfactin (SF) is one of the promising environment-friendly biosurfactants abundantly produced by microorganisms such as Bacillus subtilis. SF is also known to act as an ionophore, wherein alkali metal ions can be trapped in the cyclic peptide. Especially, SF is expected to show high affinity for Cs(+) because of the distinctive cavity size and coordination number.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
July 2015
To develop a structural homolog of mannosylerythritol lipids (MELs), Pseudozyma tsukubaensis JCM16987 (known to be a specific producer of the diastereomer type of mono-acetylated MEL (MEL-B)) was cultivated in medium containing 4 % (w/v) olive oil as the primary carbon source and 4 % L-arabitol as the supplemental sugar alcohol. Based on thin-layer chromatography (TLC), the glycolipid extract showed two major spots corresponding to MEL-B and an unknown glycolipid (GL1). Based on high-performance liquid chromatography after acid hydrolysis, GL1 from the L-arabitol culture showed two primary peaks identical to mannose and arabitol using the sugar analysis column, and one peak identical to L-arabitol was detected using the chiral resolution column.
View Article and Find Full Text PDFMannosylerythritol lipids (MELs) are a glycolipid class of biosurfactants produced by a variety yeast and fungal strains that exhibit excellent interfacial and biochemical properties. MEL-producing fungi were identified using an efficient screening method for the glycolipid production and taxonomical classification on the basis of ribosomal RNA sequences. MEL production is limited primarily to the genus Pseudozyma, with significant variability among the MEL structures produced by each species.
View Article and Find Full Text PDFIn this study, the effects of the degree of hydrolysis on the interfacial and emulsifying properties of soybean peptides were evaluated based on surface and interfacial tension, dynamic light scattering (DLS), and freeze-fracture transmission electron microscopy (FF-TEM) analyses. Of the five evaluated soybean peptides (SP95, SP87, SP75, SP49, and SP23), those with higher degrees of hydrolysis (SP95 and SP87) did not exhibit noticeable surface-active properties in water, whereas those with relatively low degrees of hydrolysis (SP75, SP49, and SP23) exhibited remarkable surface tension-lowering activity. The latter set (SP75, SP49, and SP23) also formed giant associates with average sizes ranging from 64.
View Article and Find Full Text PDF