Publications by authors named "Tomohiro Hajima"

Nutrient inputs from the atmosphere and rivers to the ocean are increased substantially by human activities. However, the effects of increased nutrient inputs are not included in the widely used CMIP5 Earth system models, which introduce bias into model simulations of ocean biogeochemistry. Here, using historical simulations by an Earth system model with perturbed atmospheric and riverine nutrient inputs, we show that the contribution of anthropogenic nutrient inputs to past global changes in ocean biogeochemistry is of similar magnitude to the effect of climate change.

View Article and Find Full Text PDF

Both low soil water content (SWC) and high atmospheric dryness (vapor pressure deficit, VPD) can negatively affect terrestrial gross primary production (GPP). The sensitivity of GPP to soil versus atmospheric dryness is difficult to disentangle, however, because of their covariation. Using global eddy-covariance observations, here we show that a decrease in SWC is not universally associated with GPP reduction.

View Article and Find Full Text PDF

To date, the treatment of permafrost in global climate models has been simplified due to the prevailing uncertainties in the processes involving frozen ground. In this study, we improved the modeling of permafrost processes in a state-of-the-art climate model by taking into account some of the relevant physical properties of soil such as changes in the thermophysical properties due to soil freezing. As a result, the improved version of the global land surface model was able to reproduce a more realistic permafrost distribution at the southern limit of the permafrost area by increasing the freezing of soil moisture in winter.

View Article and Find Full Text PDF

The Yedoma layer, a permafrost layer containing a massive amount of underground ice in the Arctic regions, is reported to be rapidly thawing. In this study, we develop the Permafrost Degradation and Greenhouse gasses Emission Model (PDGEM), which describes the thawing of the Arctic permafrost including the Yedoma layer due to climate change and the greenhouse gas (GHG) emissions. The PDGEM includes the processes by which high-concentration GHGs (CO and CH) contained in the pores of the Yedoma layer are released directly by dynamic degradation, as well as the processes by which GHGs are released by the decomposition of organic matter in the Yedoma layer and other permafrost.

View Article and Find Full Text PDF

Nitrification in terrestrial soils is one of the major processes of emission of nitrous oxide (N2O), a potent greenhouse gas and stratospheric-ozone-depleting substance. We assessed the fraction of N2O emission associated with nitrification in soil through a meta-analysis and sensitivity analysis using a process-based model. We corrected observational values of gross nitrification and associated N2O emission rates from 71 records for various soils in the world spanning from 0.

View Article and Find Full Text PDF

The regional budget of methane (CH) emissions for East Asia, a crucial region in the global greenhouse gas budget, was quantified for 1990-2015 with a bottom-up method based on inventories and emission model simulations. Anthropogenic emissions associated with fossil fuel extraction, industrial activities, waste management, and agricultural activities were derived from the Emission Database for Global Atmospheric Research version 4.3.

View Article and Find Full Text PDF