Publications by authors named "Tomohiko Kuwabara"

A capillary high-performance liquid chromatography (HPLC) system equipped with a dual-electrode detector utilizing track-etched membrane electrodes (TEMEs) was combined with a microdialysis sampling setup. The electrochemical detector benefits from the high electrolysis efficiency of TEMEs, allowing for calibration-free coulometric detection and simplifying data analysis to determine the dopamine recovery through a dialysis probe. Additionally, this system was used for in vivo monitoring of dopamine in the right striatum of a mouse brain.

View Article and Find Full Text PDF

How eukaryotes were generated is an enigma of evolutionary biology. Widely accepted archaeal-origin eukaryogenesis scenarios, based on similarities of genes and related characteristics between archaea and eukaryotes, cannot explain several eukaryote-specific features of the last eukaryotic common ancestor, such as glycerol-3-phosphate-type membrane lipids, large cells and genomes, and endomembrane formation. Thermotogales spheroids, having multicopy-integrated large nucleoids and producing progeny in periplasm, may explain all of these features as well as endoplasmic reticulum-type signal cleavage sites, although they cannot divide.

View Article and Find Full Text PDF

The electrochemical flow cell containing track-etched microporous membrane electrodes was applied to a dual-electrode coulometric detector for microbore/capillary HPLC with a small injection volume and low eluent flow rate. The proposed flow cell with a 0.1-mm diameter inlet channel gave a detection volume of 0.

View Article and Find Full Text PDF

Thermotogales are rod-shaped, Gram-negative, anaerobic, (hyper) thermophiles distinguished by an outer sheath-like toga, which comprises an outer membrane (OM) and an amorphous layer (AL). Thermosipho globiformans bacteria can transform into spheroids with multiple cells concurrently with AL disintegration during early growth; the cell is defined as the cytoplasmic membrane (CM) plus the entity surrounded by the CM. Spheroids eventually produce rapidly moving periplasmic 'progenies' through an unknown mechanism.

View Article and Find Full Text PDF

The demand for precious metals has increased in recent years. However, low concentrations of precious metals dissolved in wastewater are yet to be recovered because of high operation costs and technical problems. The unicellular red alga, Galdieria sulphuraria, efficiently absorbs precious metals through biosorption.

View Article and Find Full Text PDF

Thermosipho globiformans (rod-shaped thermophilic fermenter) and Methanocaldococcus jannaschii (coccal hyperthermophilic hydrogenotrophic methanogen) established H2-mediated syntrophy at 68 °C, forming exopolysaccharide-based aggregates. Electron microscopy showed that the syntrophic partners connected to each other directly or via intercellular bridges made from flagella, which facilitated transfer of H2. Elemental sulfur (S(0)) interrupted syntrophy; polysulfides abiotically formed from S(0) intercepted electrons that were otherwise transferred to H(+) to produce H2, resulting in the generation of sulfide (sulfur respiration).

View Article and Find Full Text PDF

We tested different alga-bacterium-archaeon consortia to investigate the production of oil-like mixtures, expecting that n-alkane-rich biofuels might be synthesized after pyrolysis. Thermosipho globiformans and Methanocaldococcus jannaschii were cocultured at 68°C with microalgae for 9 days under two anaerobic conditions, followed by pyrolysis at 300°C for 4 days. Arthrospira platensis (Cyanobacteria), Dunaliella tertiolecta (Chlorophyta), Emiliania huxleyi (Haptophyta), and Euglena gracilis (Euglenophyta) served as microalgal raw materials.

View Article and Find Full Text PDF

Thermosipho globiformans is a member of Thermotogales, which contains rod-shaped, Gram-negative, anaerobic (hyper)thermophiles. These bacteria are characterized by an outer sheath-like envelope, the toga, which includes the outer membrane and an amorphous layer, and forms large periplasm at the poles of each rod. The cytoplasmic membrane and its contents are called "cell", and the toga and its contents "rod", to distinguish between them.

View Article and Find Full Text PDF

An anaerobic rod-shaped thermophile was isolated from a hydrothermal vent at Suiyo Seamount, Izu-Bonin Arc, western Pacific Ocean, and was named strain MN14(T). The rods were gram-negative-staining, non-motile without flagella, 2-4 µm long and 0.5 µm wide, and divided by binary fission in the mid-exponential phase.

View Article and Find Full Text PDF

A fast-growing and cell-fusing hyperthermophilic archaeon was isolated from a hydrothermal vent at Suiyo Seamount, Izu-Bonin Arc, Western Pacific Ocean. Strain TS2(T) is an irregular, motile coccus that is generally 0.7-1.

View Article and Find Full Text PDF

The hemolysin-like protein (HLP) Sll1951, characterized by the GGXGXDXUX nonapeptide motif implicated in Ca(2+) binding, was purified from the glucose-tolerant strain (GT) of Synechocystis sp. strain PCC 6803. HLP was eluted at 560 kDa after gel filtration chromatography.

View Article and Find Full Text PDF

A cell-fusing hyperthermophilic archaeon was isolated from hydrothermal fluid obtained from Suiyo Seamount of the Izu-Bonin Arc. The isolate, TS1(T), is an irregular coccus, usually 0.5-2 microm in diameter and motile with a polar tuft of flagella.

View Article and Find Full Text PDF

A novel method for analyzing halobacterial pigments was developed, in which retinal was liberated from halobacterial rhodopsins as retinal oxime by hydroxylamine, ethyl beta-apo-8'-carotenoate was introduced as an internal standard, and the pigments including bacterioruberin and beta-carotene were analyzed by HPLC at the same time. With this method, we revealed that light enhances the biosynthesis of bacterioruberin and the conversion of beta-carotene to retinal, but does not affect beta-carotene biosynthesis in Halobacterium salinarum strain Oyon Moussa-16. Low oxygen tension given in the light brought a slight increase in retinal accumulation, although its biosynthesis from beta-carotene is an oxygenation reaction.

View Article and Find Full Text PDF