Philos Trans A Math Phys Eng Sci
April 2023
We investigate the mechanics of bistable, hard-magnetic, elastic beams, combining experiments, finite-element modelling (FEM) and a reduced-order theory. The beam is made of a hard magneto-rheological elastomer, comprising two segments with antiparallel magnetization along the centreline, and is set into a bistable curved configuration by imposing an end-to-end shortening. Reversible snapping is possible between these two stable states.
View Article and Find Full Text PDFWe study the wetting phenomena of a soft viscoelastic solid film on a smooth and flat substrate. A poly-dimethylsiloxane (PDMS) rubber film is suspended from a stage at both ends, and the wetting behavior of the film against a glass substrate is observed while lowering the stage at a constant velocity. We find that the dynamics of the rubber-glass-air contact lines vary with the lowering velocity of the stage.
View Article and Find Full Text PDFNetworks of flexible filaments often involve regions of tight contact. Predictively understanding the equilibrium configurations of these systems is challenging due to intricate couplings between topology, geometry, large nonlinear deformations, and friction. Here, we perform an in-depth study of a simple, yet canonical, problem that captures the essence of contact between filaments.
View Article and Find Full Text PDFPlant shoot gravitropism is a complex phenomenon resulting from gravity sensing, curvature sensing (proprioception), the ability to uphold self-weight and growth. Although recent data analysis and modelling have revealed the detailed morphology of shoot bending, the relative contribution of bending force (derived from the gravi-proprioceptive response) and stretching force (derived from shoot axial growth) behind gravitropism remains poorly understood. To address this gap, we combined morphological data with a theoretical model to analyze shoot bending in wild-type and mutant .
View Article and Find Full Text PDFBrownian motion is widely used as a model of diffusion in equilibrium media throughout the physical, chemical and biological sciences. However, many real-world systems are intrinsically out of equilibrium owing to energy-dissipating active processes underlying their mechanical and dynamical features. The diffusion process followed by a passive tracer in prototypical active media, such as suspensions of active colloids or swimming microorganisms, differs considerably from Brownian motion, as revealed by a greatly enhanced diffusion coefficient and non-Gaussian statistics of the tracer displacements.
View Article and Find Full Text PDFSnapping of a slender structure is utilized in a wide range of natural and manmade systems, mostly to achieve rapid movement without relying on musclelike elements. Although several mechanisms for elastic energy storage and rapid release have been studied in detail, a general understanding of the approach to design such a kinetic system is a key challenge in mechanics. Here we study a twist-driven buckling and fast flip dynamics of a geometrically constrained ribbon by combining experiments, numerical simulations, and an analytical theory.
View Article and Find Full Text PDFWhen a flat elastic strip is compressed along its axis, it is bent in one of two possible directions via spontaneous symmetry breaking, forming a cylindrical arc. This is a phenomenon well known as Euler buckling. When this cylindrical section is pushed in the other direction, the bending direction can suddenly reverse.
View Article and Find Full Text PDFThe morphology of an elastic strip subject to vertical compressive stress on a frictional rigid substrate is investigated by a combination of theory and experiment. We find a rich variety of morphologies, which-when the bending elasticity dominates over the effect of gravity-are classified into three distinct types of states: pinned, partially slipped, and completely slipped, depending on the magnitude of the vertical strain and the coefficient of static friction. We develop a theory of elastica under mixed clamped-hinged boundary conditions combined with the Coulomb-Amontons friction law and find excellent quantitative agreement with simulations and controlled physical experiments.
View Article and Find Full Text PDFThis study numerically and analytically investigates the dynamics of a rotor under viscous or dry friction as a nonequilibrium probe of a granular gas. In order to demonstrate the role of the rotor as a probe for a nonequilibrium bath, the molecular dynamics (MD) simulation of the rotor is performed under viscous or dry friction surrounded by a steady granular gas under gravity. A one-to-one map between the velocity distribution function (VDF) of the granular gas and the angular distribution function for the rotor is theoretically derived.
View Article and Find Full Text PDFFor a wide class of stochastic athermal systems, we derive Langevin-like equations driven by non-Gaussian noise, starting from master equations and developing a new asymptotic expansion. We found an explicit condition whereby the non-Gaussian properties of the athermal noise become dominant for tracer particles associated with both thermal and athermal environments. Furthermore, we derive an inverse formula to infer microscopic properties of the athermal bath from the statistics of the tracer particle.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2014
The motion of an adiabatic piston under dry friction is investigated to clarify the roles of dry friction in nonequilibrium steady states. We clarify that dry friction can reverse the direction of the piston motion and causes a discontinuity or a cusplike singularity for velocity distribution functions of the piston. We also show that the heat fluctuation relation is modified under dry friction.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2012
We perform three-dimensional simulations of the impact of a granular jet for both frictional and frictionless grains. Small shear stress observed in the experiment [X. Cheng et al.
View Article and Find Full Text PDF