De-differentiation and subsequent increased proliferation and inflammation of vascular smooth muscle cells (VSMCs) is one of the mechanisms of atherogenesis. Maintaining VSMCs in a contractile differentiated state is therefore a promising therapeutic strategy for atherosclerosis. We have reported the 18-base myogenetic oligodeoxynucleotide, iSN04, which serves as an anti-nucleolin aptamer and promotes skeletal and myocardial differentiation.
View Article and Find Full Text PDFA myogenetic oligodeoxynucleotide (myoDN), iSN04 (5'-AGA TTA GGG TGA GGG TGA-3'), is a single-stranded 18-base telomeric DNA that serves as an anti-nucleolin aptamer and induces myogenic differentiation, which is expected to be a nucleic acid drug for the prevention of disease-associated muscle wasting. To improve the drug efficacy and synthesis cost of myoDN, shortening the sequence while maintaining its structure-based function is a major challenge. Here, we report the novel 12-base non-telomeric myoDN, iMyo01 (5'-TTG GGT GGG GAA-3'), which has comparable myogenic activity to iSN04.
View Article and Find Full Text PDFAn 18-base myogenetic oligodeoxynucleotide (myoDN), iSN04, acts as an anti-nucleolin aptamer and induces myogenic differentiation of skeletal muscle myoblasts. This study investigated the effect of iSN04 on murine embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). In the undifferentiated state, iSN04 inhibited the proliferation of ESCs and iPSCs but did not affect the expression of pluripotent markers.
View Article and Find Full Text PDFA myogenetic oligodeoxynucleotide, iSN04, is the 18-base single-stranded DNA that acts as an anti-nucleolin aptamer. iSN04 has been reported to restore myogenic differentiation by suppressing inflammatory responses in myoblasts isolated from patients with diabetes or healthy myoblasts exposed to cancer-releasing factors. Thus, iSN04 is expected to be a nucleic acid drug for the muscle wasting associated with chronic diseases.
View Article and Find Full Text PDFEmbryonal rhabdomyosarcoma (ERMS) is the muscle-derived tumor retaining myogenic ability. iSN04 and AS1411, which are myogenetic oligodeoxynucleotides (myoDNs) serving as anti-nucleolin aptamers, have been reported to inhibit the proliferation and induce the differentiation of myoblasts. The present study investigated the effects of iSN04 and AS1411 in vitro on the growth of multiple patient-derived ERMS cell lines, ERMS1, KYM1, and RD.
View Article and Find Full Text PDFDysfunction of bone-forming cells, osteoblasts, is one of the causes of osteoporosis. Accumulating evidence has indicated that oligodeoxynucleotides (ODNs) designed from genome sequences have the potential to regulate osteogenic cell fate. Such osteogenetic ODNs (osteoDNs) targeting and activating osteoblasts can be the candidates of nucleic acid drugs for osteoporosis.
View Article and Find Full Text PDFIn a previous study, the three-dimensional structures of mitochondria in type I and type IIb muscle fibers of chicken were analyzed. The study reported differences in the shape of the mitochondria and the distribution of lipid droplets. In this study, we three-dimensionally analyzed mitochondria and lipid droplets of type II muscle fiber subtypes IIa, IIb, and IIc of chicken lateral iliotibial muscle in the same field of view using correlative light electron microscopy (CLEM) and array tomography methods.
View Article and Find Full Text PDFMyoblasts are myogenic precursors that develop into myotubes during muscle formation. Improving efficiency of myoblast differentiation is important for advancing meat production by domestic animals. We recently identified novel oligodeoxynucleotides (ODNs) termed myogenetic ODNs (myoDNs) that promote the differentiation of mammalian myoblasts.
View Article and Find Full Text PDFSkeletal muscle wasting in patients with diabetes mellitus (DM) is a complication of decreased muscle mass and strength, and is a serious risk factor that may result in mortality. Deteriorated differentiation of muscle precursor cells, called myoblasts, in DM patients is considered to be one of the causes of muscle wasting. We recently developed myogenetic oligodeoxynucleotides (myoDNs), which are 18-base single-strand DNAs that promote myoblast differentiation by targeting nucleolin.
View Article and Find Full Text PDFSkeletal muscle myoblasts are myogenic precursor cells that generate myofibers during muscle development and growth. We recently reported that broiler myoblasts, compared to layer myoblasts, proliferate and differentiate more actively and promptly into myocytes, which corresponds well with the muscle phenotype of broilers. Furthermore, RNA sequencing (RNA-seq) revealed that numerous genes are differentially expressed between layer and broiler myoblasts during myogenic differentiation.
View Article and Find Full Text PDFHerein we report that the 18-base telomeric oligodeoxynucleotides (ODNs) designed from the GG genome promote differentiation of skeletal muscle myoblasts which are myogenic precursor cells. We termed these myogenetic ODNs (myoDNs). The activity of one of the myoDNs, iSN04, was independent of Toll-like receptors, but dependent on its conformational state.
View Article and Find Full Text PDFWooden breast syndrome (WB) constitutes an emerging myopathy in the pectoralis major muscle (PM) of broiler chickens, characterized by myofiber hypertrophy and degeneration along with severe fibrosis. WB pathogenesis has been considered to involve hypoxia induced by rapid growth of the PM. In this study, we focused on mitochondrial morphology and dynamics in the myofibers, as these organelles are sensitive to damage by hypoxia, and examined the effects on WB pathogenesis.
View Article and Find Full Text PDFMyoblasts play a central role during skeletal muscle formation and growth. Precise understanding of myoblast properties is thus indispensable for meat production. Herein, we report the cellular characteristics and gene expression profiles of primary-cultured myoblasts of layer and broiler chickens.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
January 2020
A natural isoquinoline alkaloid, berberine, has been known to exhibit anti-tumor activity in various cancer cells inducing cell cycle arrest. However, it has not been investigated whether berberine and its analogs inhibit the growth of rhabdomyosarcoma (RMS), which is the most frequent soft tissue tumor in children. The present study examined the anti-tumor effects of berberine and palmatine on expansions of three human embryonal RMS cell lines; ERMS1, KYM1, and RD.
View Article and Find Full Text PDFToll-like receptors (TLRs) are a group of sensory receptors which are capable of recognizing a microbial invasion and activating innate immune system responses, including inflammatory responses, in both immune and non-immune cells. However, TLR functions in chick myoblasts, which are myogenic precursor cells contributing to skeletal muscle development and growth, have not been studied. Here, we report the expression patterns of TLR genes as well as TLR ligand-dependent transcriptions of interleukin (IL) genes in primary-cultured chick myoblasts.
View Article and Find Full Text PDFAdipose tissues in obese individuals are characterized by a state of chronic low-grade inflammation. Pre-adipocytes and adipocytes in this state secrete pro-inflammatory adipokines, such as interleukin 6 (IL-6), which induce insulin resistance and hyperglycemia. Theophylline (1,3-dimethylxanthine) exerts anti-inflammatory effects, but its effects on pro-inflammatory adipokine secretion by pre-adipocytes and adipocytes have not been examined.
View Article and Find Full Text PDFCell-cell fusion has been a great technology to generate valuable hybrid cells and organisms such as hybridomas. In this study, skeletal muscle myoblasts were utilized to establish a novel method for autonomous xenogenic cell fusion. Myoblasts are mononuclear myogenic precursor cells and fuse mutually to form multinuclear myotubes.
View Article and Find Full Text PDFAim: Smoking induces vascular inflammation and increases the risk of cardiovascular events. Lectinlike oxidized low-density lipoprotein receptor-1 (LOX-1) is a scavenger receptor that is induced by oxidative stress and is associated with atherosclerotic plaque formation and destabilization. LOX-1 interacts with C-reactive protein (CRP) and plays an important role in inflammatory diseases.
View Article and Find Full Text PDFAs drug therapy is of limited efficacy in the treatment of heart diseases related to loss of cardiomyocytes, which have very poor division potential, regenerative medicine is expected to be a new strategy to address regenerative treatment in cardiac diseases. To achieve myocardial regeneration, elucidation of the mechanism of myocardial differentiation from stem cells is essential. Myocardial differentiation from embryonic pluripotent stem cells has been investigated worldwide, and remarkable developments such as establishment of induced pluripotent stem cells and transformation of somatic cells to cardiomyocytes have recently been made, markedly changing the strategy of regenerative medicine.
View Article and Find Full Text PDFObjective: It has recently been highlighted that proinflammatory (M1) macrophages predominate over anti-inflammatory (M2) macrophages in obesity, thereby contributing to obesity-induced adipose inflammation and insulin resistance. A recent clinical trial revealed that highly purified eicosapentaenoic acid (EPA) reduces the incidence of major coronary events. In this study, we examined the effect of EPA on M1/M2-like phenotypes of peripheral blood monocytes in obese dyslipidemic patients.
View Article and Find Full Text PDFThe mechanisms that lead from obesity to atherosclerotic disease are not fully understood. Obesity involves angiogenesis in which vascular endothelial growth factor-A (VEGF-A) plays a key role. On the other hand, vascular endothelial growth factor-C (VEGF-C) plays a pivotal role in lymphangiogenesis.
View Article and Find Full Text PDFLOX-1 is an endothelial receptor for oxidized low-density lipoprotein (oxLDL), a key molecule in the pathogenesis of atherosclerosis.The basal expression of LOX-1 is low but highly induced under the influence of proinflammatory and prooxidative stimuli in vascular endothelial cells, smooth muscle cells, macrophages, platelets and cardiomyocytes. Multiple lines of in vitro and in vivo studies have provided compelling evidence that LOX-1 promotes endothelial dysfunction and atherogenesis induced by oxLDL.
View Article and Find Full Text PDFBackground: A natural p300-specific histone acetyltransferase (HAT) inhibitor, curcumin, may have therapeutic potential for heart failure. However, it is unclear whether curcumin exhibits beneficial additive or synergistic effects on conventional therapy with angiotensin-converting enzyme inhibitors (ACEIs).
Methods And Results: Rats were subjected to a sham operation or left coronary artery ligation.
MicroRNAs (miRNAs), small noncoding RNAs, are negative regulators of gene expression and play important roles in gene regulation in the heart. To examine the role of miRNAs in the expression of the two isoforms of the cardiac myosin heavy chain (MHC) gene, α- and β-MHC, which regulate cardiac contractility, endogenous miRNAs were downregulated in neonatal rat ventricular myocytes (NRVMs) using lentivirus-mediated small interfering RNA (siRNA) against Dicer, an essential enzyme for miRNA biosynthesis, and MHC expression levels were examined. As a result, Dicer siRNA could downregulate endogenous miRNAs simultaneously and the β-MHC gene but not α-MHC, which implied that specific miRNAs could upregulate the β-MHC gene.
View Article and Find Full Text PDFThe treatment of ES cells with trichostatin A (TSA), an HDAC inhibitor, induces the acetylation of GATA4 as well as histones, and facilitates their differentiation into cardiomyocytes. Recently, we demonstrated that cyclin-dependent kinase 9 (Cdk9), a core component of positive elongation factor-b, is a novel GATA4-binding partner. The present study examined whether Cdk9 forms a complex with GATA4 in mouse ES cells and is involved in their differentiation into cardiomyocytes.
View Article and Find Full Text PDF