Publications by authors named "Tomofumi Ukai"

It was previously shown that spherical particles are self-assembled by compounds composed of C-(6,6)CNB-C, where CNB stands for "carbon nanobelt", by mixing two individual solutions of C and (6,6)CNB molecules dissolved in 1,2-dichlorobenzene at room temperature. The particles are monodisperse in water thanks to their high absolute value of the zeta potential in water. In this report, we investigate the effect of thermal treatment of the particles on some changes in the physical properties and structures.

View Article and Find Full Text PDF

The possibility for an ecologically friendly and simple production of gold nanoparticles (AuNPs) with Chaga mushroom () (Ch-AuNPs) is presented in this study. Chaga extract's reducing potential was evaluated at varied concentrations and temperatures. The nanoparticles synthesized were all under 20 nm in size, as measured by TEM, which is a commendable result for a spontaneous synthesis method utilizing a biological source.

View Article and Find Full Text PDF

Cardiac tissue engineering (CTE) aims to generate potential scaffolds to mimic extracellular matrix (ECM) for recreating the injured myocardium. Highly porous scaffolds with properties that aid cell adhesion, migration and proliferation are critical in CTE. In this study, electrospun porous poly (l-lactic acid) (PLLA) porous scaffolds were fabricated and modified with different ECM derived proteins such as collagen, gelatin, fibronectin and poly-L-lysine.

View Article and Find Full Text PDF

Extraordinarily small (2.4 nm) cobalt ferrite nanoparticles (ESCIoNs) were synthesized by a one-pot thermal decomposition approach to study their potential as magnetic resonance imaging (MRI) contrast agents. Fine size control was achieved using oleylamine alone, and annular dark-field scanning transmission electron microscopy revealed highly crystalline cubic spinel particles with atomic resolution.

View Article and Find Full Text PDF

Cellulosic materials have been of tremendous importance to mankind since its discovery due to its superior properties and its abundance in nature. Recently, an increase in demand for alternate green materials has rekindled the interest for cellulosic materials. Here, bacterial cellulose has been functionalized with sulfate groups through acetosulfation to gain solubility in aqueous media, which provides access to several applications.

View Article and Find Full Text PDF

Combining the electrophoresis and conventional Coulter methods, we previously proposed the electrophoretic Coulter method (ECM), enabling simultaneous analysis of the size, number, and zeta potential of individual specimens. We validated the ECM experimentally using standard polystyrene particles and red blood cells (RBCs) from sheep; the latter was the first ECM application to biological particles in biotechnology research. However, specimens are prevented from passing through the ECM module aperture, which prevents accurate determination of the zeta potential of each specimen.

View Article and Find Full Text PDF

Magnetic nanoparticles are of great importance particularly in the field of biomedicine as well as nanotechnology and nano materials science and technology. Here, we synthesise magnetic alloy-filling carbon nanoparticles (MA@C NPs) via the following two-step procedure; (1) Irradiation of a laser beam of 266 nm wavelength into super-critical benzene, in which both ferrocene and cobaltocene are dissolved, at 290 °C; and (2) annealing of the particles at 600 and 800 °C. We find that the core particles are composed of cobalt (Co), iron (Fe) and oxygen (O) and covered with carbon layers.

View Article and Find Full Text PDF

We investigate the cluster-cluster aggregations of superparamagnetic particles in a rotational magnetic field numerically by the Brownian dynamics method, focusing on the cases of ϕ = 0.01 and 0.03 and Ma = 0, 0.

View Article and Find Full Text PDF

We analyze the dynamics of paramagnetic particles on a paramagnetic substrate under a rotational magnetic field. When the paramagnetic particles are subjected to a rotational magnetic field, the rotational plane of which is perpendicular to the substrate surface, the particles form chain clusters caused by the dipole-dipole interaction between the particles and these clusters display a tumbling motion under certain conditions. In this case, the angular momentum of the clusters is converted to a translational one through the force of friction acting between the particles and substrate and, as a result, the clusters move along the surface of the substrate.

View Article and Find Full Text PDF

We investigate the patterns formed by paramagnetic particles, which are dispersed in a liquid solvent subjected to a dc magnetic field. We calculate the dynamics of paramagnetic particles by the Brownian dynamics method based on the Langevin equation. We, in particular, focus on the effect of the system height on the pattern formations.

View Article and Find Full Text PDF