Publications by authors named "Tomoaki Uchiki"

Objectives: Human serum albumin can take on two forms, mercaptalbumin (HMA) or non-mercaptalbumin (HNA), depending on the redox status of its Cys34. The ratio of HMA and HNA is considered to be a novel biomarker of oxidative stress. While HPLC and mass spectrometry are established methods to measure HMA and HNA, a simple colorimetric assay was applied to measure this biomarker.

View Article and Find Full Text PDF

Mutation detection is of major interest in molecular diagnostics, especially in the field of oncology. However, detection can be challenging as mutant alleles often coexist with excess copies of wild-type alleles. Bridged nucleic acid (BNA)-clamp PCR circumvents this challenge by preferentially suppressing the amplification of wild-type alleles and enriching rare mutant alleles.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) are widely utilized as therapeutic drugs for various diseases, such as cancer, autoimmune diseases, and infectious diseases. Using the avian-derived B cell line DT40, we previously developed an antibody display technology, namely, the ADLib system, which rapidly generates antigen-specific mAbs. Here, we report the development of a human version of the ADLib system and showcase the streamlined generation and optimization of functional human mAbs.

View Article and Find Full Text PDF

Epidemiologic studies indicate that the risks for major age-related debilities including coronary heart disease, diabetes, and age-related macular degeneration (AMD) are diminished in people who consume lower glycemic index (GI) diets, but lack of a unifying physiobiochemical mechanism that explains the salutary effect is a barrier to implementing dietary practices that capture the benefits of consuming lower GI diets. We established a simple murine model of age-related retinal lesions that precede AMD (hereafter called AMD-like lesions). We found that consuming a higher GI diet promotes these AMD-like lesions.

View Article and Find Full Text PDF

Eukaryotic cells target proteins for degradation by the 26S proteasome by attaching a ubiquitin chain. Using a rapid assay, we analyzed the initial binding of ubiquitinated proteins to purified 26S particles as an isolated process at 4°C. Subunits Rpn10 and Rpn13 contribute equally to the high-affinity binding of ubiquitin chains, but in their absence, ubiquitin conjugates bind to another site with 4-fold lower affinity.

View Article and Find Full Text PDF

Ubiquitin (Ub)-protein conjugates formed by purified ring-finger or U-box E3s with the E2, UbcH5, resist degradation and disassembly by 26S proteasomes. These chains contain multiple types of Ub forks in which two Ub's are linked to adjacent lysines on the proximal Ub. We tested whether cells contain factors that prevent formation of nondegradable conjugates and whether the forked chains prevent proteasomal degradation.

View Article and Find Full Text PDF

S5a/Rpn10 is a ubiquitin (Ub)-binding protein that is a subunit of the 26S proteasome but also exists free in the cytosol. It binds poly-Ub chains through its two Ub-interacting motifs (UIMs). We discovered that, unlike typical substrates of Ub ligases (E3s), S5a can be ubiquitinated by all E3s tested including multimeric and monomeric Ring finger E3s (MuRF1, Siah2, Parkin, APC, and SCF(betaTRCP1)), the U-box E3, CHIP, and HECT domain E3s (E6AP and Nedd4) when assayed with UbcH5 or related Ub-conjugating enzymes.

View Article and Find Full Text PDF

Ribonucleotide reductase (RNR) catalyzes the conversion of nucleoside diphosphates to deoxynucleoside diphosphates. Crucial for rapidly dividing cells, RNR is a target for cancer therapy. In eukaryotes, RNR comprises a heterooligomer of alpha(2) and beta(2) subunits.

View Article and Find Full Text PDF

Ribonucleotide reductase catalyzes a crucial step in de novo DNA synthesis and is allosterically controlled by relative levels of dNTPs to maintain a balanced pool of deoxynucleoside triphosphates in the cell. In eukaryotes, the enzyme comprises a heterooligomer of alpha(2) and beta(2) subunits. The alpha subunit, Rnr1, contains catalytic and regulatory sites.

View Article and Find Full Text PDF

Photochemically generated hydroxyl radicals were used to map solvent-exposed regions in the C14S mutant of the protein Sml1p, a regulator of the ribonuclease reductase enzyme Rnr1p in Saccharomyces cerevisiae. By using high-performance mass spectrometry to characterize the oxidized peptides created by the hydroxyl radical reactions, amino acid solvent-accessibility data for native and denatured C14S Sml1p that revealed a solvent-excluding tertiary structure in the native state were obtained. The data on solvent accessibilities of various amino acids within the protein were then utilized to evaluate the de novo computational models generated by the HMMSTR/Rosetta server.

View Article and Find Full Text PDF

Sml1p is a small 104-amino acid protein from Saccharomyces cerevisiae that binds to the large subunit (Rnr1p) of the ribonucleotide reductase complex (RNR) and inhibits its activity. During DNA damage, S phase, or both, RNR activity must be tightly regulated, since failure to control the cellular level of dNTP pools may lead to genetic abnormalities, such as genome rearrangements, or even cell death. Structural characterization of Sml1p is an important step in understanding the regulation of RNR.

View Article and Find Full Text PDF

Sml1 is a small protein in Saccharomyces cerevisiae which inhibits the activity of ribonucleotide reductase (RNR). RNR catalyzes the rate-limiting step of de novo dNTP synthesis. Sml1 is a downstream effector of the Mec1/Rad53 cell cycle checkpoint pathway.

View Article and Find Full Text PDF

Sml1p is small protein that binds to and inhibits the activity of ribonucleotide reductase (RNR)3, a protein enzyme complex that controls the balance and level of the cellular deoxynucleotide diphosphate pools that are critical for DNA synthesis and repair. In this respect, Sml1p is a checkpoint protein whose function is to regulate the activity of the large subunit of RNR (Rnr1p). Sml1p is thought to be regulated by the MEC1/RAD53 cell cycle checkpoint pathway.

View Article and Find Full Text PDF