An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe future time of emergence when precipitation changes due to anthropogenic influences begins to continuously exceed the previous maximum value is defined as the 'tipping year' Historical experiments and future experiments simulated by state-of-the-art climate models were utilized. A total of 510,000 time series from year 1856 to 2095 were generated by sampling the natural internal variability in precipitation. The time evolutions of internal variability in the whole time period were estimated from the combination of past and future experiments with preindustrial control experiments.
View Article and Find Full Text PDFAtmosphere-ocean coupling effect on the frequency distribution of tropical cyclones (TCs) and its future change is studied using an atmosphere and ocean coupled general circulation model (AOGCM). In the present climate simulation, the atmosphere-ocean coupling in the AOGCM improves biases in the AGCM such as the poleward shift of the maximum of intense TC distribution in the Northern Hemisphere and too many intense TCs in the Southern Hemisphere. Particularly, subsurface cold water plays a key role to reduce these AGCM biases of intense TC distribution.
View Article and Find Full Text PDF