Nihon Naika Gakkai Zasshi
April 2010
Context: Amiodarone, a potent antiarrhythmic, iodine-containing agent, is a highly active oxidant exerting cytotoxic effects on thyrocytes at pharmacological concentrations. Patients receiving amiodarone usually remain euthyroid, but occasionally develop thyroid dysfunction. Although there is a general consensus that amiodarone-associated hypothyroidism is iodine induced, the destructive mechanism of thyroid follicles in amiodarone-induced thyrotoxicosis remains unknown.
View Article and Find Full Text PDFAlthough viral infection is thought to be associated with subacute thyroiditis and probably with autoimmune thyroid disease, possible changes in thyroid function during the prodromal period of infection or subclinical infection remain largely unknown. Recently, it was shown that pathogen-associated molecular patterns stimulate Toll-like receptors (TLR) and activate innate immune responses by producing type I interferons (IFN). Using a human thyroid follicle culture system, in which de novo synthesized thyroid hormones are released into the culture medium under physiological concentrations of human TSH, we studied the effects of polyinosinic-polycytidylic acid [Poly(I:C)], a chemical analog of viral double-stranded RNA (dsRNA), on TSH-induced thyroid function.
View Article and Find Full Text PDFWe investigated whether dehydroepiandrosterone (DHEA) or DHEA-sulfate (S) affected the activities of nuclear receptors, with special reference to constitutive androstane receptor beta (CARbeta). Administration of DHEA or DHEA-S enhanced the DNA binding of hepatic nuclear extracts to responsive elements for the retinoic acid receptor, the retinoic acid receptor beta 2 and the peroxisome proliferator activated receptor. The bound complexes were shown to be the CARbeta-RXR heterodimer by antibody-supershift assays.
View Article and Find Full Text PDF