Publications by authors named "Tomoaki Kinjo"

There has been considerable progress in the development of computational methods for designing protein-protein interactions, but engineering high-affinity binders without extensive screening and maturation remains challenging. Here, we test a protein design pipeline that uses iterative rounds of deep learning (DL)-based structure prediction (AlphaFold2) and sequence optimization (ProteinMPNN) to design autoinhibitory domains (AiDs) for a PD-L1 antagonist. With the goal of creating an anticancer agent that is inactive until reaching the tumor environment, we sought to create autoinhibited (or masked) forms of the PD-L1 antagonist that can be unmasked by tumor-enriched proteases.

View Article and Find Full Text PDF

There has been considerable progress in the development of computational methods for designing protein-protein interactions, but engineering high-affinity binders without extensive screening and maturation remains challenging. Here, we test a protein design pipeline that uses iterative rounds of deep learning (DL)-based structure prediction (AlphaFold2) and sequence optimization (ProteinMPNN) to design autoinhibitory domains (AiDs) for a PD-L1 antagonist. Inspired by recent advances in therapeutic design, we sought to create autoinhibited (or masked) forms of the antagonist that can be conditionally activated by proteases.

View Article and Find Full Text PDF

Bacterial photoactivated adenylyl cyclase (bPAC) has been widely used in signal transduction research. However, due to its low two-photon absorption, bPAC cannot be efficiently activated by two-photon (2P) excitation. Taking advantage of the high two-photon absorption of monomeric teal fluorescent protein 1 (mTFP1), we herein developed 2P-activatable bPAC (2pabPAC), a fusion protein consisting of bPAC and mTFP1.

View Article and Find Full Text PDF

Optical dimerizers have been developed to untangle signaling pathways, but they are of limited use in vivo, partly due to their inefficient activation under two-photon (2P) excitation. To overcome this problem, we developed Förster resonance energy transfer (FRET)-assisted photoactivation, or FRAPA. On 2P excitation, mTagBFP2 efficiently absorbs and transfers the energy to the chromophore of CRY2.

View Article and Find Full Text PDF

We report a rare case of multicentric Castleman disease treated successfully with single-lung transplantation. A 12-year-old patient developed increasing dyspnea. Elevated serum interleukin-6 (177.

View Article and Find Full Text PDF