The intestinal lamina propria (LP) is a leukocyte-rich cornerstone of the immune system owing to its vital role in immune surveillance and barrier defense against external pathogens. Here, we present a protocol for isolating and analyzing immune cell subsets from the mouse intestinal LP for further downstream applications. Starting from tissue collection and cleaning, epithelium removal, and enzymatic digestion to collection of single cells, we explain each step in detail to maximize the yield of immune cells from the intestinal LP.
View Article and Find Full Text PDFImmune cell trafficking constitutes a fundamental component of immunological response to tissue injury, but the contribution of intrinsic RNA nucleotide modifications to this response remains elusive. We report that RNA editor ADAR2 exerts a tissue- and stress-specific regulation of endothelial responses to interleukin-6 (IL-6), which tightly controls leukocyte trafficking in IL-6-inflamed and ischemic tissues. Genetic ablation of ADAR2 from vascular endothelial cells diminished myeloid cell rolling and adhesion on vascular walls and reduced immune cell infiltration within ischemic tissues.
View Article and Find Full Text PDFKeratinocytes (KCs) form the outer epithelial barrier of the body, protecting against invading pathogens. Mice lacking the IL-17RA or both IL-17A and IL-17F develop spontaneous Staphylococcusaureus skin infections. We found a marked expansion of T cells, comprised of RORγt-expressing γδ T cells and T helper 17 cells in the skin-draining lymph nodes of these mice.
View Article and Find Full Text PDFBrain metastasis in breast cancer remains difficult to treat and its incidence is increasing. Therefore, the development of new therapies is of utmost clinical relevance. Recently, toll-like receptor (TLR) 4 was correlated with IL6 expression and poor prognosis in 1 215 breast cancer primaries.
View Article and Find Full Text PDFThe essential amino acid tryptophan (Trp) is metabolized by gut commensals, yielding in compounds that affect innate immune cell functions directly, but also acting on the aryl hydrocarbon receptor (AHR), thus regulating the maintenance of group 3 innate lymphoid cells (ILCs), promoting T helper 17 (T17) cell differentiation, and interleukin-22 production. In addition, microbiota-derived Trp metabolites have direct effects on the vascular endothelium, thus influencing the development of vascular inflammatory phenotypes. Indoxyl sulfate was demonstrated to promote vascular inflammation, whereas indole-3-propionic acid and indole-3-aldehyde had protective roles.
View Article and Find Full Text PDFInterleukin (IL)-10 is considered a prototypical anti-inflammatory cytokine, significantly contributing to the maintenance and reestablishment of immune homeostasis. Accordingly, it has been shown in the intestine that IL-10 produced by Tregs can act on effector T cells, thereby limiting inflammation. Herein, we investigate whether this role also applies to IL-10 produced by T cells during central nervous system (CNS) inflammation.
View Article and Find Full Text PDFPro-inflammatory T cells in the central nervous system (CNS) are causally associated with multiple demyelinating and neurodegenerative diseases, but the pathways that control these responses remain unclear. Here we define a population of inflammatory group 3 innate lymphoid cells (ILC3s) that infiltrate the CNS in a mouse model of multiple sclerosis. These ILC3s are derived from the circulation, localize in proximity to infiltrating T cells in the CNS, function as antigen-presenting cells that restimulate myelin-specific T cells, and are increased in individuals with multiple sclerosis.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a complex inflammatory disease of the central nervous system (CNS) with an unknown etiology. Thereby, MS is not a uniform disease but rather represents a spectrum of disorders, where each aspect needs to be modeled with specific requirements-for a systematic overview see our previous issue of this review (Kurschus, Wortge, & Waisman, 2011). However, there is broad consensus about the critical involvement of the immune system in the disease pathogenesis.
View Article and Find Full Text PDFInterleukin-17A- (IL-17A) and IL-17F-producing CD4 T helper cells (T17 cells) are implicated in the development of chronic inflammatory diseases, such as multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). T17 cells also orchestrate leukocyte invasion of the central nervous system (CNS) and subsequent tissue damage. However, the role of IL-17A and IL-17F as effector cytokines is still confused with the encephalitogenic function of the cells that produce these cytokines, namely, T17 cells, fueling a long-standing debate in the neuroimmunology field.
View Article and Find Full Text PDFThe proinflammatory cytokine interleukin 1 (IL-1) is crucially involved in the pathogenesis of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Herein, we studied the role of IL-1 signaling in blood-brain barrier (BBB) endothelial cells (ECs), astrocytes and microglia for EAE development, using mice with the conditional deletion of its signaling receptor IL-1R1. We found that IL-1 signaling in microglia and astrocytes is redundant for the development of EAE, whereas the IL-1R1 deletion in BBB-ECs markedly ameliorated disease severity.
View Article and Find Full Text PDFThe notion of "immune privilege" of the brain has been revised to accommodate its infiltration, at steady state, by immune cells that participate in normal neurophysiology. However, the immune mechanisms that regulate learning and memory remain poorly understood. Here, we show that noninflammatory interleukin-17 (IL-17) derived from a previously unknown fetal-derived meningeal-resident γδ T cell subset promotes cognition.
View Article and Find Full Text PDFFoxp3 regulatory T (Treg) cells restrict immune pathology in inflamed tissues; however, an inflammatory environment presents a threat to Treg cell identity and function. Here, we establish a transcriptional signature of central nervous system (CNS) Treg cells that accumulate during experimental autoimmune encephalitis (EAE) and identify a pathway that maintains Treg cell function and identity during severe inflammation. This pathway is dependent on the transcriptional regulator Blimp1, which prevents downregulation of Foxp3 expression and "toxic" gain-of-function of Treg cells in the inflamed CNS.
View Article and Find Full Text PDFProinflammatory IL-17 plays an important role in various diseases and defence against extracellular microorganisms. Healing of leishmaniasis is promoted by Th1/Tc1 cells, whereas Th2/Treg are associated with worsened disease outcome. In addition, high expression of IL-17A in Leishmania-susceptible BALB/c and artificial overexpression of IL-17A in T cells in resistant C57BL/6 mice worsened disease outcome.
View Article and Find Full Text PDFBackground & Aims: The CYLD lysine 63 deubiquitinase gene (CYLD) encodes tumor suppressor protein that is mutated in familial cylindromatosus, and variants have been associated with Crohn disease (CD). Splice forms of CYLD that lack exons 7 and 8 regulate transcription factors and functions of immune cells. We examined the expression of splice forms of CYLD in colon tissues from patients with CD and their effects in mice.
View Article and Find Full Text PDFUnlabelled: IL-17A and IL-17F share the highest sequence homology of the IL-17 family and signal via the same IL-17RA/RC receptor heterodimer. To better explore the expression of these two cytokines, we used a double reporter mouse strain (IL-17 mice), where IL-17A expressing cells are marked by enhanced green fluorescent protein (eGFP) while red fluorescence protein (RFP) reports the expression of IL-17F. In steady state, we found that Th17 and γδ T cells only expressed IL-17A, while IL-17F expression was restricted to CD8 T cells (Tc17) and innate lymphoid cells (ILC type 3) of the gut.
View Article and Find Full Text PDFAicardi-Goutières syndrome (AGS) is a rare early onset childhood encephalopathy caused by persistent neuroinflammation of autoimmune origin. AGS is a genetic disorder and >50% of affected individuals bear hypomorphic mutations in ribonuclease H2 (RNase H2). All available RNase H2 mouse models so far fail to mimic the prominent CNS involvement seen in AGS.
View Article and Find Full Text PDFUnlabelled: Chronic hepatitis leads to liver fibrosis and cirrhosis. Cirrhosis is a major cause of worldwide morbidity and mortality. Macrophages play a key role in fibrosis progression and reversal.
View Article and Find Full Text PDFArenaviruses such as Lassa virus (LASV) cause hemorrhagic fever. Terminal shock is associated with a systemic cytokine storm, but the mechanisms are ill defined. Here we used HLA-A2-expressing mice infected with a monkey-pathogenic strain of lymphocytic choriomeningitis virus (LCMV-WE), a close relative of LASV, to investigate the pathophysiology of arenavirus hemorrhagic fever (AHF).
View Article and Find Full Text PDFMicroglia as principle innate immune cells of the central nervous system (CNS) are the first line of defense against invading pathogens. They are capable of sensing infections through diverse receptors, such as Toll-like receptor 4 (TLR4). This receptor is best known for its ability to recognize bacterial lipopolysaccharide (LPS), a causative agent of gram-negative sepsis and septic shock.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2017
TGF-β is an anti-inflammatory cytokine whose signaling is negatively controlled by Smad7. Previously, we established a role for Smad7 in the generation of autoreactive T cells; however, the function of Smad7 in dendritic cells (DCs) remains elusive. Here, we demonstrate that DC-specific Smad7 deficiency resulted in elevated expression of the transcription factors Batf3 and IRF8, leading to increased frequencies of CD8CD103 DCs in the spleen.
View Article and Find Full Text PDFThe cellular sources of interleukin 6 (IL-6) that are relevant for differentiation of the T17 subset of helper T cells remain unclear. Here we used a novel strategy for the conditional deletion of distinct IL-6-producing cell types to show that dendritic cells (DCs) positive for the signaling regulator Sirpα were essential for the generation of pathogenic T17 cells. Using their IL-6 receptor α-chain (IL-6Rα), Sirpα DCs trans-presented IL-6 to T cells during the process of cognate interaction.
View Article and Find Full Text PDFInterleukin-1 (IL-1) is implicated in numerous pathologies, including multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). However, the exact mechanism by which IL-1 is involved in the generation of pathogenic T cells and in disease development remains largely unknown. We found that following EAE induction, pertussis toxin administration leads to IL-1 receptor type 1 (IL-1R1)-dependent IL-1β expression by myeloid cells in the draining lymph nodes.
View Article and Find Full Text PDFInterleukin-1 (IL-1) plays a crucial role in numerous inflammatory diseases via action on its only known signaling IL-1 receptor type 1 (IL-1R1). To investigate the role of IL-1 signaling in selected cell types, we generated a new mouse strain in which exon 5 of the Il1r1 gene is flanked by loxP sites. Crossing of these mice with CD4-Cre transgenic mice resulted in IL-1R1 loss of function specifically in T cells.
View Article and Find Full Text PDF